首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammation and ageing are intertwined in chronic obstructive pulmonary disease (COPD). The histone deacetylase SIRT1 and the related activation of FoxO3 protect from ageing and regulate inflammation. The role of SIRT1/FoxO3 in COPD is largely unknown. This study evaluated whether cigarette smoke, by modulating the SIRT1/FoxO3 axis, affects airway epithelial pro‐inflammatory responses. Human bronchial epithelial cells (16HBE) and primary bronchial epithelial cells (PBECs) from COPD patients and controls were treated with/without cigarette smoke extract (CSE), Sirtinol or FoxO3 siRNA. SIRT1, FoxO3 and NF‐κB nuclear accumulation, SIRT1 deacetylase activity, IL‐8 and CCL20 expression/release and the release of 12 cytokines, neutrophil and lymphocyte chemotaxis were assessed. In PBECs, the constitutive FoxO3 expression was lower in patients with COPD than in controls. Furthermore, CSE reduced FoxO3 expression only in PBECs from controls. In 16HBE, CSE decreased SIRT1 activity and nuclear expression, enhanced NF‐κB binding to the IL‐8 gene promoter thus increasing IL‐8 expression, decreased CCL20 expression, increased the neutrophil chemotaxis and decreased lymphocyte chemotaxis. Similarly, SIRT1 inhibition reduced FoxO3 expression and increased nuclear NF‐κB. FoxO3 siRNA treatment increased IL‐8 and decreased CCL20 expression in 16HBE. In conclusion, CSE impairs the function of SIRT1/FoxO3 axis in bronchial epithelium, dysregulating NF‐κB activity and inducing pro‐inflammatory responses.  相似文献   

2.

Background

Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation.

Methods

BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs.

Results

Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein.

Conclusion

Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation.  相似文献   

3.
Aldehyde dehydrogenase 3A1 (ALDH3A1), an ALDH superfamily member, catalyzes the oxidation of reactive aldehydes, highly toxic components of cigarette smoke (CS). Even so, the role of ALDH3A1 in CS-induced cytotoxicity and DNA damage has not been examined. Among all of the ALDH superfamily members, ALDH3A1 mRNA levels showed the greatest induction in response to CS extract (CSE) exposure of primary human bronchial epithelial cells (HBECs). ALDH3A1 protein accumulation was accompanied by increased ALDH enzymatic activity in CSE-exposed immortalized HBECs. The effects of overexpression or suppression of ALDH3A1 on CSE-induced cytotoxicity and DNA damage (γH2AX) were evaluated in cultured immortalized HBECs. Enforced expression of ALDH3A1 attenuated cytotoxicity and downregulated γH2AX. SiRNA-mediated suppression of ALDH3A1 blocked ALDH enzymatic activity and augmented cytotoxicity in CSE-exposed cells. Our results suggest that the availability of ALDH3A1 is important for cell survival against CSE in HBECs.  相似文献   

4.
In order to assess cigarette smoke-induced oxidative damage to intact cells, an assay was developed to measure cell detachment and protection. Due to the complex nature of cigarette smoke, which contains molecules that can interfere with conventional spectrophotometric and fluorometric biochemical assays, transformed rabbit corneal cells were radiolabeled with tritiated thymidine and then subjected to direct stream smoke. As a result, cell damage in response to the smoke from only two cigarettes could be measured in a time-dependent manner. When cells were prelabeled with N-acetyl-L-cysteine (NAC), a substrate for glutathione synthesis, a significant reduction in damage was measured. Additionally, when buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, was incubated with cells, a reduction in the effectiveness of NAC was observed, although NAC still retained some activity. Furthermore, vitamin E conferred no protection to cells in this system nor was NAC active in a separate assay that appears to favor peroxyl radical generation. From these results we conclude that cigarette smoke damage can easily be determined at the cellular level with this technique and that NAC acted to prevent this damage in two ways: first, as glutathione precursor and, secondly, as an antioxidant capable of scavenging non-peroxyl radicals.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS) plays a crucial role in endothelial cell functions. SIRT1, a NAD+-dependent deacetylase, is shown to regulate endothelial function and hence any alteration in endothelial SIRT1 will affect normal vascular physiology. Cigarette smoke (CS)-mediated oxidative stress is implicated in endothelial dysfunction. However, the role of SIRT1 in regulation of eNOS by CS and oxidants are not known. We hypothesized that CS-mediated oxidative stress downregulates SIRT1 leading to acetylation of eNOS which results in reduced nitric oxide (NO)-mediated signaling and endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) and H2O2 showed decreased SIRT1 levels, activity, but increased phosphorylation concomitant with increased eNOS acetylation. Pre-treatment of endothelial cells with resveratrol significantly attenuated the CSE- and oxidant-mediated SIRT1 levels and eNOS acetylation. These findings suggest that CS- and oxidant-mediated reduction of SIRT1 is associated with acetylation of eNOS which have implications in endothelial dysfunction.  相似文献   

6.
7.
Therapeutic hypothermia (TH) may attenuate myocardial ischaemia–reperfusion injury, thereby improving outcomes in acute myocardial infarction. However, the specific mechanism by which TH alleviates MIRI has not been elucidated so far. In this study, 120 healthy male Sprague‐Dawley rats were randomly divided into five groups. Haemodynamic parameters, myocardial infarction area, histological changes and the levels of cardiac enzymes, caspase‐1 and inflammatory cytokines were determined. In addition, the extent of myocardial fibrosis, the degree of cardiomyocyte apoptosis and the expression levels of SIRT3, GSDMD‐N, fibrosis‐related proteins and inflammation‐related proteins were estimated.TH reduced myocardial infarct area and cardiac enzyme levels, improved cardiomyopathic damage and haemodynamic indexes, and attenuated myocardial fibrosis, the protein expression levels of collagen I and III, myocardial apoptosis, the levels of inflammatory cytokines and inflammation‐related proteins. Notably, the immunofluorescence and protein expression levels of SIRT3 were upregulated in the 34H+DMSO group compared to the I/R group, but this protective effect was abolished by the SIRT3 inhibitor 3‐TYP. After administration of Mcc950, the reversal effects of 3‐TYP were significantly abolished, and TH could protect against MIRI in a rat isolated heart model by inhibiting inflammation and fibrosis. The SIRT3/NLRP3 signalling pathway is one of the most important signalling pathways in this regard.  相似文献   

8.
Celastrol, a pentacyclic tritepene extracted from Tripterygium Wilfordi plant, showing potent liver protection effects on several liver‐related diseases. However, the anti‐inflammatory potential of celastrol in liver fibrosis and the detailed mechanisms remain uncovered. This study was to investigate the anti‐inflammatory effect of celastrol in liver fibrosis and to further reveal mechanisms of celastrol‐induced anti‐inflammatory effects with a focus on AMPK‐SIRT3 signalling. Celastrol showed potent ameliorative effects on liver fibrosis both in activated hepatic stellate cells (HSCs) and in fibrotic liver. Celastrol remarkably suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Interestingly, celastrol increased SIRT3 promoter activity and SIRT3 expression both in fibrotic liver and in activated HSCs. Furthermore, SIRT3 silencing evidently ameliorated the anti‐inflammatory potential of celastrol. Besides, we found that celastrol could increase the AMPK phosphorylation. Further investigation showed that SIRT3 siRNA decreased SIRT3 expression but had no obvious effect on phosphorylation of AMPK. In addition, inhibition of AMPK by employing compound C (an AMPK inhibitor) or AMPK1α siRNA significantly suppressed SIRT3 expression, suggesting that AMPK was an up‐stream protein of SIRT3 in liver fibrosis. We further found that depletion of AMPK significantly attenuated the inhibitory effect of celastrol on inflammation. Collectively, celastrol attenuated liver fibrosis mainly through inhibition of inflammation by activating AMPK‐SIRT3 signalling, which makes celastrol be a potential candidate compound in treating or protecting against liver fibrosis.  相似文献   

9.
The over-activation of inflammation is involved in the pathogenesis of smoke-induced lung injury (SILI), while Rb3 treatment may alleviate smoke-induced lung injury by down-regulating the expression of H19, a regulator of miR-29b expression. Moreover, HMGB1 is an important mediator of inflammation. Therefore, in this study, we set up an animal model of SILI and treated it with Rb3 to study the effect of Rb3 on the treatment of SILI and the involvement of H19/miR-29b/HMGB1/TLR4 signalling. SILI mice treated with Rb3 before H&E staining and TUNEL assay were conducted to observe the pathological damages and status of apoptosis in each group. Real-time PCR, Western blot, computational analysis and luciferase assays were utilized to establish the signalling pathway involved in the pathogenesis of SILI and the action of Rb3 treatment. Rb3 treatment alleviated pathological changes in the lungs while decreasing the levels of W/D ratio and cell apoptotic index. H19 was validated to sponge miR-29b-3p, while HMGB1 mRNA was validated to be a target gene of miR-29b-3. As a result, a signalling pathway of H19/miR-29b-3p/HMGB1 was established. Cell viability was evidently reduced after 72 hours of treatment with CSE, but the treatment of Rb3 elevated the expression of H19 and HMBG1 in the presence of CSE. Also, CSE-induced inhibition of miR-29b-3p expression was restored by Rb3. The findings of this study collectively demonstrated that Rb3 exhibited its therapeutic effect during the treatment of SILI via modulating the H19/miR-29b-3p/HMBG1 signalling pathway.  相似文献   

10.
Epidemiological studies have found that diabetes and cognitive dysfunction are closely related. Quercetin has been certified with the effect on improving diabetes mellitus (DM) and cognitive impairment. However, the effect and related mechanism of quercetin on diabetic encephalopathy (DE) are still ambiguous. In this study, we used the db/db mice (diabetic model) to discover whether quercetin could improve DE through the Sirtuin1/NLRP3 (NOD-, LRR- and pyrin domain-containing 3) pathway. Behavioural results (Morris water maze and new object recognition tests) showed that quercetin (70 mg/kg) improved the learning and memory. Furthermore, quercetin alleviated insulin resistance and the level of fasting blood glucose. Besides, Western blot analysis also showed that quercetin increased the protein expressions of nerve- and synapse-related protein, including postsynapticdensity 93 (PSD93), postsynapticdensity 95 (PSD95), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of db/db mice. Quercetin also increased the protein expression of SIRT1 and decreased the expression of NLRP3 inflammation-related proteins, including NLRP3, the adaptor protein ASC and cleaved Caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. In conclusion, the present results indicate that the SIRT1/NLRP3 pathway may be a crucial mechanism for the neuroprotective effect of quercetin against DE.  相似文献   

11.
Cigarette smoke-induced airway epithelial cell mitophagy is an important mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mitochondrial protein Nix (also known as BNIP3L) is a selective autophagy receptor and participates in several human diseases. However, little is known about the role of Nix in airway epithelial cell injury during the development of COPD. The aim of the present study is to investigate the effects of Nix on mitophagy and mitochondrial function in airway epithelial cells exposed to cigarette smoke extract (CSE). Our present study has found that CSE could increase Nix protein expression and induce mitophagy in airway epithelial cells. And Nix siRNA significantly inhibited mitophagy and attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. In contrast, Nix overexpression enhanced mitophagy and aggravated mitochondrial dysfunction and cell injury when airway epithelial cells were incubated with 7.5% CSE. These data suggest that Nix-dependent mitophagy promotes airway epithelial cell and mitochondria injury induced by cigarette smoke, and may be involved in the pathogenesis of COPD and other cigarette smoke-associated diseases.  相似文献   

12.
13.
Smoking is associated with an increased risk of respiratory diseases, including lung cancer and asthma. However, the mechanisms or diagnostic markers for smoking‐related diseases remain largely unknown. Here we investigated the role of cigarette smoke condensate (CSC) in the regulation of human bronchial epithelial cell (BEAS‐2B) behavior. We found that exposure to CSC significantly inhibited BEAS‐2B cell viability, impaired cell morphology, induced cell apoptosis, triggered oxidative damage, and promoted inflammatory response, which suggests a deleterious effect of CSC on bronchial epithelial cells. In addition, CSC markedly altered the expression of apoptosis‐associated protein factors, including p21, soluble tumor necrosis factor receptor 1, and Fas ligand. In sum, our study identified a panel of novel protein factors that may mediate the actions of CSC on bronchial epithelial cells and have a predictive value for the development and progression of smoking‐related diseases, thus providing insights into the development of potential diagnostic and therapeutic strategies against these diseases.  相似文献   

14.
Ultraviolet A (UVA) radiation is a major contributor to the pathogenesis of skin photoaging, and the aim of this study was to investigate the effect of Acacetin on skin photoaging in UVA‐irradiated mice and human dermal fibroblasts (HDF). Healthy dorsal depilated rats were irradiated with UVA 30 J/cm2 daily, every other day, for 1 month. Acacetin (40, 80 mg kg/day) was coated to the bare skin of the rats'' backs 1 h before UVA irradiation. HDF were treated different concentrations of Acacetin (5, 10, 20 μg/ml) and then irradiated with UVA (20 J/cm2). Acacetin was found to be effective in ameliorating UVA‐induced oxidative stress and cell death. Acacetin also prevented the UVA‐induced decrease of SIRT3, reduced the activation of mitogen‐activated protein kinases (MAPKs, p‐38 and p‐JNK) and blocked the down‐regulated activation of oxidative stress in matrix metalloproteinases (MMPs). In addition, Acacetin increased the expressions of collagen‐promoting proteins (TGF‐β and Smad3). Finally, the SIRT3 inhibitor 3‐TYP blocked all protective effects of Acacetin, indicating that the protective effect of Acacetin against UVA photoaging is SIRT3‐dependent. Acacetin effectively mitigated photoaging by targeting the promotion of SIRT3, inhibiting the UVA‐induced increases in MMPs and pro‐inflammatory factors, and promoting TGF‐β and Smad3.  相似文献   

15.
16.
Cigarette smoke extracts (CSE) alter TLR4 expression and activation in bronchial epithelial cells. Cilomilast, a phosphodiesterase-4 inhibitor, inhibits cigarette smoke-induced neutrophilia.This study was aimed to explore whether cilomilast, in a human bronchial epithelial cell line (16-HBE), counteracted CSE effects. In particular, TLR4 expression, IP-10 and IL-8 release, lymphocyte and neutrophil chemotactic activity and ERK and IkBa phosphorylation in CSE and LPS-stimulated 16-HBE were assessed.CSE increased TLR4 expression, reduced IP-10 release and lymphocyte chemotactic activity and increased IL-8 release and neutrophil chemotactic activity. Cilomilast reduced TLR4 expression, IL-8 release and neutrophil chemotactic activity as well as it increased IP-10 release and lymphocyte chemotactic activity. All these cilomilast mediated effects were associated with a reduced ERK1/2 and with an increased IkBa phosphorylation.In conclusion, the present study provides compelling evidences that cilomilast may be considered a possible valid therapeutic option in controlling inflammatory processes present in smokers.  相似文献   

17.
Most people are aware of gestational diabetes mellitus (GDM), a dangerous pregnancy complication in which pregnant women who have never been diagnosed with diabetes develop chronic hyperglycaemia. Exosomal microRNA (miRNA) dysregulation has been shown to be a key player in the pathophysiology of GDM. In this study, we looked into how placental exosomes and their miRNAs may contribute to GDM. When compared to exosomes from healthy pregnant women, it was discovered that miR-135a-5p was elevated in placenta-derived exosomes that were isolated from the maternal peripheral plasma of GDM women. Additionally, we discovered that miR-135a-5p encouraged HTR-8/SVneo cell growth, invasion and migration. Further research revealed that miR-135a-5p activates HTR-8/SVneo cells' proliferation, invasion and migration by promoting PI3K/AKT pathway activity via Sirtuin 1 (SIRT1). The transfer of exosomal miR-135a-5p generated from the placenta could be viewed as a promising agent for targeting genes and pertinent pathways involved in GDM, according to our findings.  相似文献   

18.
Exhaled nitric oxide (eNO) is decreased by cigarette smoking. The hypothesis that oxides of nitrogen (NOX) in cigarette smoke solution (CSS) may exert a negative feedback mechanism upon NO release from epithelial (AEC, A549, and NHTBE) and basophilic cells (RBL-2H3) was tested in vitro. CSS inhibited both NO production and degranulation (measured as release of beta-hexosaminidase) in a dose-dependent manner from RBL-2H3 cells. Inhibition of NO production by CSS in AEC, A549, and NHTBE cells was also dose-dependent. In addition, CSS decreased expression of NOS mRNA and protein expression. The addition of NO inhibitors and scavengers did not, however, reverse the effects of CSS, nor did a NO donor (SNP) or nicotine mimic CSS. N-acetyl-cysteine, partially reversed the inhibition of beta-hexosaminidase release suggesting CSS may act via oxidative free radicals. Thus, some of the inhibitory effects of CSS appear to be via oxidative free radicals rather than a NOX -related negative feedback.  相似文献   

19.
Tris (dibenzylideneacetone) dipalladium (Tris DBA), a small‐molecule palladium complex, can inhibit cell growth and proliferation in pancreatic cancer, lymphocytic leukaemia and multiple myeloma. Given that this compound is particularly active against B‐cell malignancies, we have been suggested that it can alleviate immune complexes (ICs)–mediated conditions, especially IgA nephropathy (IgAN). The therapeutic effects of Tris DBA on glomerular cell proliferation and renal inflammation and mechanism of action were examined in a mouse model of IgAN. Treatment of IgAN mice with Tris DBA resulted in markedly improved renal function, albuminuria and renal pathology, including glomerular cell proliferation, neutrophil infiltration, sclerosis and periglomerular inflammation in the renal interstitium, together with (Clin J Am Soc Nephrol. 2011, 6, 1301‐1307) reduced mitochondrial ROS generation; (Am J Physiol‐Renal Physiol. 2011. 301, F1218‐F1230) differentially regulated autophagy and NLRP3 inflammasome; (Clin J Am Soc Nephrol. 2012, 7, 427‐436) inhibited phosphorylation of JNK, ERK and p38 MAPK signalling pathways, and priming signal of the NLRP3 inflammasome; and (Free Radic Biol Med. 2013, 61, 285‐297) blunted NLRP3 inflammasome activation through SIRT1‐ and SIRT3‐mediated autophagy induction, in renal tissues or cultured macrophages. In conclusion, Tris DBA effectively ameliorated the mouse IgAN model and targeted signalling pathways downstream of ICs‐mediated interaction, which is a novel immunomodulatory strategy. Further development of Tris DBA as a therapeutic candidate for IgAN is warranted.  相似文献   

20.
Cigarette smoke (CS) leads to increased oxidative stress, inflammation, and exaggerated senescence, which are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). While the role of cellular senescence in COPD is known, it is not clear if the removal of senescent cells could alleviate the disease symptoms. To test this, we used the novel mouse model-p16-3MR, and studied the effect of ganciclovir (GCV)-mediated removal of senescent cells after chronic CS (3 months) and environmental tobacco smoke (ETS) (6 months) exposure to CS. Our results showed the reversal of CS-induced cellular senescence on the clearance of p16+ senesced cells by GCV treatment. Interestingly, the clearance of p16+ senescent cells via GCV led to a decrease in the neutrophil counts in the BALF of GCV-treated CS-exposed p16-3MR mice, as well as reversal of CS-mediated airspace enlargement in p16-3MR mice. Mice exposed to low dose ETS caused insignificant changes in the SA-β-Gal+ senescent cells and airspace enlargement. Overall, our data provide evidence for the role of lung cellular senescence on smoke exposure and clearance of senescent cells in p16-3MR mice in the reversal of COPD/emphysema pathology with a possibility of senolytics as therapeutic interventions in COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号