首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry forests of Hawai'i are one of the most endangered forest types worldwide with 45% of all native tree and shrub species listed as federally threatened or endangered. Supplementation and reintroduction of endangered dry forest species are necessary to maintain viable population sizes. The goal of this research was to reintroduce Hibiscus brackenridgei mokuleianus, the state flower of Hawai'i and a federally endangered species, into its historical range on O'ahu. We determined the environmental variables contributing to plant survival and growth, assessed the effectiveness of a reintroduction program with minimal management, and evaluated the potential for habitat suitability models to assist in selection of optimal sites for reintroduction. Forty‐five individuals were grown from cuttings and transplanted in two regions: Ka'ena Point (2 sites, 10 individuals each site) and along Kealia Trail (5 sites, 5 individuals each site). Survival and height measurements were taken four times over the course of 25 months. There was 35% survival at Ka'ena Point and 76% survival at Kealia Trail and an average plant growth of 70.5 cm (±30.1 cm) and 121.6 cm (±61.7 cm), respectively. Ka'ena Point had significantly lower survival (p > 0.001) and growth rates (p > 0.001) than Kealia Trail. Plants survived best at sites with steep slopes and high soil moisture and grew the most in sites with steeper slopes, higher soil moisture, and lower soil bulk density. These findings provide insight into environmental variables which should be considered prior to planting as well as the intensity of site management.  相似文献   

2.
Restoring habitat structure that existed before active and inadvertent fire suppression is thought to be critical to maintaining populations of some rare plants in fire‐suppressed habitats. Nevertheless, the impacts of habitat restoration on most endangered plants are poorly understood. Current theory predicts and empirical studies have shown that the reduction of shade or competition (frequently a goal of many habitat restoration projects in degraded fire‐dependent ecosystems) benefits plants adapted to nutrient‐poor soils by increasing the benefit‐to‐cost ratio of adaptations for enhanced nutrient capture. Here, I examined how experimental reduction of neighboring plants in a wet longleaf pine community dominated in the ground cover by shrubs and stump sprouts influenced the growth, the reproduction, the carnivorous effort, and the benefits of carnivory in a U.S. federally endangered species, Sarracenia rubra ssp. alabamensis. Two years of data showed no significant effects of neighbor reduction or prey exclusion on any of several indicators of plant performance, nor was there any evidence of a hypothesized morphological trade‐off between shade avoidance and prey capture. These results were unexpected. Inadequate replication and atypical precipitation patterns were ruled out as possible explanations. The population studied here (unlike that of a different, but morphologically similar, species growing in a fire‐maintained pine grass–sedge savanna) did not exhibit the ability to respond to variation in competition from neighboring plants.  相似文献   

3.
Changes in land‐use have resulted in the decline of many formerly common plants of nutrient‐poor grasslands in Europe. Recently, extensification schemes have been applied at sites in order to restore former habitat conditions. However, the establishment of rare and endangered plants is often severely limited by the lack of propagules both in the seed bank and in the surrounding landscape. For such species deliberate introductions may be necessary to overcome these limitations. In a 7‐year study, we assessed the importance of gaps created by sod cutting, of plant stage, and of plant origin for the restoration of populations of Scorzonera humilis, a threatened long‐lived plant of nutrient‐poor, wet grasslands. The effect of gaps on seedling emergence and survival varied strongly among the 12 sites. Gaps increased survival at nutrient‐rich, but reduced it at nutrient‐poor sites. Remarkably, young plants grown for only 5 weeks in the laboratory and transplanted into the same sites had much higher survival than seedlings from seeds sown and there were no differences in survival between nutrient‐rich and nutrient‐poor sites. The field performance of the plants from the various populations of origin varied depending on the site into which they were transplanted, indicating genotype by environment interactions and genetic differentiation among populations, but there was no home‐site advantage. While sowing only succeeded in producing adult plants in five sites, transplanting succeeded at 10 sites. Our results suggest that transplanting young plants could be a much more effective and faster way to establish new populations than sowing seeds.  相似文献   

4.
A primary objective of riparian restoration in California is the creation of habitat for endangered species. Four restoration sites in San Diego County were monitored between 1989 and 1993 and evaluated for their suitability as nesting habitat for Vireo bellii pusillus (Least Bell's Vireo), a state and federally endangered obligate riparian breeder. Vegetation structure at each site was quantified annually and compared to a model of canopy architecture derived from Least Bell's Vireo territories in natural habitat. Vireo use of restored habitat was documented through systematic surveys and nest monitoring. By 1993, only one site in its entirety met the habitat suitability criteria of the model, but portions of each site during all years did so. Differences between sites in the time required to develop suitable habitat—well-developed layered vegetation from the ground to under 8m in height)—were attributable largely to variation in annual rainfall. Vireos visited restoration sites to forage as early as the first growing season, but they did not establish territories or nest there until at least part of the site supported suitable habitat as determined from the model. Placement of territories and nests coincided with patches of dense vegetation characteristic of natural nesting areas. Occupation of restored sites was accelerated by the presence of adjacent mature riparian habitat, which afforded birds nest sites and/or foraging habitat lacking in the planted vegetation. Vireos nesting in restored habitat achieved success comparable to that of vireos nesting in surrounding natural habitat, and there was no evidence that productivity was reduced in created areas. These findings indicate that creating nesting habitat for this target species is feasible and suggest that the critical components of vireo nesting habitat have been captured in both the design and quantitative assessment of restoration sites.  相似文献   

5.
Juvenile survival and age at first breeding (i.e. recruitment) are critical parameters affecting population dynamics in birds, but high levels of natal dispersal preclude measurement of these variables in most species. We used multi‐state capture–recapture models to measure age‐specific survival and recruitment probabilities of piping plovers Charadrius melodus in the Great Lakes region during 1993–2012. This federally endangered population is thoroughly monitored throughout its entire breeding range, minimizing concerns that measures of survival and recruitment are confounded by temporary or permanent emigration. First‐year survival (± SE) averaged 0.284 ± 0.019 from mean banding age (9 d) and 0.374 ± 0.023 from fledging age (23 d). Factors that increased first‐year survival during the pre‐fledging period (9–23 d) included earlier hatching dates, older age at banding, greater number of fledglings at a given site, and better body condition at time of banding. However, when chicks that died prior to fledging were excluded from analysis, only earlier hatching dates improved first‐year survival estimates. Females had a higher probability (0.557 ± 0.066) of initiating breeding at age one than did males (0.353 ± 0.052), but virtually all plovers began breeding by age three. Adult survival was reduced by increased hurricane activity on the southeast U.S. Atlantic coast where Great Lakes piping plovers winter and by higher populations of merlins Falco columbarius. Mean annual adult survival declined from 1993 to 2012, and did not differ between males and females. Enhanced body condition led to higher survival to fledge and early breeding led to improved first‐year survival; therefore, management actions focused on ensuring access to quality feeding habitat for growing young and protecting early nests may increase recruitment in this federally endangered population.  相似文献   

6.
Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site‐level characteristics, landscape factors, and land‐use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site‐level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red‐cockaded woodpecker in the southeastern United States. Land‐use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post‐agricultural sites; however, understory species composition was affected by historical connectivity, but only for post‐agricultural sites. The influences of management and restoration activities were only apparent once land‐use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post‐agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site‐level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land‐use history, and underscore the importance of considering land‐use history and landscape effects during restoration.  相似文献   

7.
Alpine plants often occupy diverse habitats within a similar elevation range, but most research on local adaptation in these plants has focused on elevation gradients. In testing for habitat‐related local adaptation, local effects on seed quality and initial plant growth should be considered in designs that encompass multiple populations and habitats. We tested for local adaptation across alpine habitats in a morphologically variable daisy species, Brachyscome decipiens, in the Bogong High Plains in Victoria, Australia. We collected seed from different habitats, controlled for maternal effects through initial seed size estimates, and characterized seedling survival and growth in a field transplant experiment. We found little evidence for local adaptation for survival or plant size, based on three adaptation measures: Home versus Away, Local versus Foreign, and Sympatric versus Allopatric (SA). The SA measure controlled for planting site and population (site‐of‐origin) effects. There were significant differences due to site‐of‐origin and planting site effects. An important confounding factor was the size of plants directly after transplantation of seedlings, which had a large impact on subsequent seedling survival and growth. Initial differences in plant width and height influenced subsequent survival across the growing season but in opposing directions: wide plants had higher survival, but tall plants had lower survival. In an additional controlled garden experiment at Cranbourne Royal Botanic Gardens, site‐of‐origin effects detected in the field experiments disappeared under more benign homogeneous conditions. Although B. decipiens from different source areas varied significantly when grown across a range of alpine habitats, these differences did not translate into a local or habitat‐related fitness advantage. This lack of local advantage may signal weak past selection, and/or weak adaptive transgeneration (plasticity) effects.  相似文献   

8.
Abstract. A local seed mixture from plants growing in a species‐rich, traditionally managed hay meadow site at Varaldsoy, Hardanger, western Norway, where many endangered hay meadow species of the region are growing, was sown in a newly harrowed experimental field 1 km from the source meadow in order to increase the habitat area for the endangered species. Of 25 endangered species recorded in the source meadow, only one (Holcus lanatus) was present in the target meadow. After sowing, 16 of the endangered species in addition to Holcus lanatus were recorded in the new site. Six species were only present in sown plots and seven others were more frequent there, while three species might have arrived by chance or originated from the seed bank. Replacing the traditional management regime, including one late cut and grazing in spring and in autumn, with three cutting times and the creation of gaps in the sward, resulted in a higher number of endangered species in plots which were only cut, possibly because the grazing was too intensive in the small enclosures.  相似文献   

9.
Restoration of habitat for endangered species often involves translocation of seeds or individuals from source populations to an area targeted for revegetation. Long-term persistence of a species is dependent on the maintenance of sufficient genetic variation within and among populations. Thus, knowledge and maintenance of genetic variability within rare or endangered species is essential for developing effective conservation and restoration strategies. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. California’s vernal pools are home to many endangered plants, thus conservation and restoration are large components of their management. Lasthenia conjugens (Asteraceae) is a federally endangered self-incompatible vernal pool annual with gravity- dispersed seeds. Using the molecular technique of intersimple sequence repeats (ISSRs), this study assessed levels and patterns of genetic variability present within natural and restored populations of L. conjugens. At Travis Air Force Base near Fairfield, California, a vernal pool restoration project is underway. Genetic success of the ecologically based seeding protocol was examined through genetic monitoring of natural and restored populations over a three-year period. Genetic diversity remained constant across the three sampled generations. Diversity was also widely distributed across all populations. We conclude that the protocol used to establish restored populations was successful in capturing similar levels and patterns of genetic diversity to those seen within natural pools. This study also demonstrates how genetic markers can be used to inform conservation and restoration decisions.  相似文献   

10.
To assess the effectiveness of conservation‐based transplantation of the endangered orchid (Cypripedium japonicum), we compared the morphology, physiology, stem‐count change, and population viability of natural versus transplanted populations undergoing habitat management (repeated removal of competing understory vegetation) between 2009 and 2015 in South Korea. The restored site had lower transmitted light and soil humidity than the natural site. The natural and transplanted populations differed in leaf morphology and total chlorophyll content (natural: 1.00 ± 0.04, restored: 0.53 ± 0.06). No recruitment occurred during the monitoring period. Population viability tended to decrease in the restored population (λG = 0.97, μ = ?0.05, σ2 = 0.036) and increase in the natural population (λG = 1.07, μ = 0.03, σ2 = 0.075). The repeated removal of competing understory vegetation had different effects on leaf traits, abundance, and reproductive properties of the endangered orchids in both populations. Notably, habitat management increased the stem count and flowering rate in natural C. japonicum but did not increase the fruit‐setting rate. Thus, despite repeated habitat management efforts (removal of competing understory vegetation), we conclude that the population viability of transplanted populations of the endangered orchid C. japonicum had poor long‐term viability compared with naturally occurring populations, a difference that is mainly attributed to inappropriate transplant‐site selection.  相似文献   

11.
Historically, wetlands along the St. Johns River, Florida, were dominated by herbaceous marshes. However, in the last 50 years many areas transformed to shrub‐dominated wetlands, at the same time a system of levees and canals was constructed to control flooding. We tested the role of water management in controlling Carolina willow (Salix caroliniana), a native shrub that accounts for most of this shift. We assessed survival and growth of seedlings and cuttings on four artificial islands. We planted willow seedlings and cuttings at the spring waterline and at three higher levels (+17.5, +35, and +50 cm) and evaluated their responses to natural hydrologic fluctuations. Overall, seedlings had lower survival than cuttings. Highest mortality occurred during summer floods and willows greater than 50 cm above marsh surface had the highest survivorship. Surviving seedlings attained similar height and biomass among elevations, but the cuttings had greater stem diameter, stem height, and biomass at higher elevations. In the second experiment, we planted seedlings and short (25 cm) and tall (50 cm) cuttings at the waterline and at three higher levels (+25, +35, and +50 cm) in artificial ponds with controlled water levels. Before flooding, seedlings at the highest elevation suffered some mortality due to desiccation, but after flooding, they had the highest survival. Elevation did not affect cutting survival, but those at the lowest elevation had the greatest height and biomass. Hydrologic manipulation can be a powerful tool to control willow establishment. However, its success depends on timely and prolonged inundation or water drawdown .  相似文献   

12.
Developing objective tools for tracking progress of restored sites is of general concern. Here, we present an innovative approach based on principal response curves (PRC) and species classification according to their preferential habitats to monitor changes in community composition. Following large‐scale restoration of a cut‐over peatland, vegetation was surveyed biannually over 8 years. We evaluated whether the establishing plant communities fell within the range of natural variation. We used both general diversity curves and PRC applied on plant species grouped by preferred habitat to compare restored sites and unrestored sites to a reference ecosystem. After 8 years, diversity and richness differed between the sites, with Forest and Ruderal species more prominent in unrestored sites, and Peatland, Forest, and Wetland species dominant in restored sites. The PRC revealed that the restored site became rapidly dominated by typical peatland plants, the main drivers of temporal changes being Sphagnum rubellum, Pohlia nutans, and Mylia anomala. Some differences remained between the restored and the undisturbed species pools: the former had more herbaceous species associated with wetlands such as Calamagrostis canadensis and Typha latifolia and the latter had more forested species like Kalmia angustifolia throughout the study. PRC revealed to be an efficient tool identifying species driving changes at the community level after restoration. In our case study, examining PRC scores after classifying species according to their preferred habitat allowed to illustrate objectively how restoration promotes target species (associated to peatlands) and how lack of intervention benefits ruderal species.  相似文献   

13.
Habitat restoration is critical to the conservation of rare species. However, restoration efforts often proceed without knowledge of their effects on these species. We investigated the reproductive response of federally endangered Fender’s blue butterfly (Plebejus icarioides fenderi) to prairie restoration in Willamette Valley, Oregon, USA. In 2009 and 2010, we quantified availability of larval host plant, Kincaid’s lupine (Lupinus oreganus), and butterfly oviposition in three restored areas (1–10 years old) and adjacent intact habitat. Oviposition measures in restored areas reached or exceeded intact habitat (0.1 eggs/leaf of host plant and 12 % of time ovipositing) within five years post-restoration. However, none of the restorations provided an equivalent host plant density to intact areas (55 leaves/m2). The different response time of host plants and butterflies to restoration highlights the importance of monitoring both vegetation and oviposition over an ecologically relevant timescale (at least 10 years). For imperiled species, quantifying reproductive response to restoration is critical for adaptive management and successful conservation of the species which restoration efforts are intended to benefit.  相似文献   

14.
Golden‐headed lion tamarins (GHLTs; Leontopithecus chrysomelas) are endangered primates endemic to the Brazilian Atlantic Forest, where loss of forest and its connectivity threaten species survival. Understanding the role of habitat availability and configuration on population declines is critical for guiding proactive conservation for this, and other, endangered species. We conducted population viability analysis to assess vulnerability of ten GHLT metapopulations to habitat loss and small population size. Seven metapopulations had a low risk of extirpation (or local extinction) over the next 100 years assuming no further forest loss, and even small populations could persist with immediate protection. Three metapopulations had a moderate/high risk of extirpation, suggesting extinction debt may be evident in parts of the species’ range. When deforestation was assumed to continue at current rates, extirpation risk significantly increased while abundance and genetic diversity decreased for all metapopulations. Extirpation risk was significantly negatively correlated with the size of the largest patch available to metapopulations, underscoring the importance of large habitat patches for species persistence. Finally, we conducted sensitivity analysis using logistic regression, and our results showed that local extinction risk was sensitive to percentage of females breeding, adult female mortality, and dispersal rate and survival; conservation or research programs that target these aspects of the species’ biology/ecology could have a disproportionately important impact on species survival. We stress that efforts to protect populations and tracts of habitat of sufficient size throughout the species’ distribution will be important in the near‐term to protect the species from continuing decline and extinction.  相似文献   

15.
Questions: Can we use local native plants for roadside revegetation? What cultural methods help enhance the process? Location: Trans Canada Highway, Terra Nova National Park, Newfoundland. Objectives: To (1) test stratification requirements for seed ger‐mination, (2) determine if germination, survival and growth of seedlings and stem cuttings of selected plants can be increased by mulching treatments and (3) identify native plants and cultural treatments useful for revegetation. Methods: We tested seed germination of Kalmia angustifoliaIris versicolorJuncus effususEriophorum vaginatum, Clintonia borealis and Cornus canadensis in a greenhouse experiment. We conducted field experiments of roadside revegetation using seeds of K. angustifolia, I. versicolorJ. effusus and E. vaginatum, as well as seedlings of I. versicolor and rooted stem cuttings of Emptrum nigrum and Juniperus communis after hay‐mat mulch and organic matter mulch application. Results: Stratified seeds of K. angustifoliaI. versicolor, J. effusus and E. vaginatum germinated successfully in the greenhouse, whereas C. borealis and C. canadensis seeds did not. Along roadsides, only I. versicolor seeds germinated. Iris versicolor cover increased significantly in organic matter mulch compared to hay‐mat mulch and control. Transplanted I. versicolor seedlings had high survival in all treatments but growth was reduced in organic matter mulch. Survival and growth of stem cuttings of E. nigrum and J. communis were significantly increased on hay‐mat mulch. Application: Rooted stem cuttings of E. nigrum and J. communis planted on hay‐mat mulch can be used as a practical method of roadside revegetation. These shrubs have low structure, are evergreen, and exhibit stress‐tolerance properties, which make them ideal species for roadside revegetation. They are also non‐palatable to wildlife. Roadside ditches can be revegetated by seeds or seedlings of I. versicolor. Robust roots and rhizomes of this plant may provide soil stability and dark green leaves and attractive flowers create aesthetically pleasing vegetation cover.  相似文献   

16.
Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non‐native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien‐grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.  相似文献   

17.
Introductions are a critical tool in the recovery of many imperiled species, yet adequate evaluation and development of best practices has lagged. Importantly, long-term post-introduction data are typically lacking, as well as suitable comparisons to wild populations to provide a baseline against which to assess performance. Here, we report on three experimental introductions of Crotalaria avonensis (Fabaceae), a federally endangered perennial herb that is narrowly endemic to scrub of the Lake Wales Ridge in peninsular Florida, U.S.A. We synthesize 10 years of post-introduction monitoring at both the introduced and a nearby, protected wild population to (1) develop best practices for conservation, and (2) evaluate the success of the introduction. First, our study identified best practices that included using transplants propagated from stem cuttings, as well as several factors that may increase seed germination such as habitat choice, seed burial, and litter addition. Second, during the 10 years following the introduction, population density in the introduced population was higher than in a nearby protected, wild population, and a comparison of vital rates revealed that this result was due to relatively high clonal and seedling recruitment rates in the introduced population. Furthermore, the source population, which occurred on unprotected lands, precipitously declined during this time period, further highlighting the importance of safeguarding plants from that population. We report that a new, growing population of C. avonensis has been established to date, with important implications for the species' conservation as well as how introductions are evaluated.  相似文献   

18.
The black‐tailed dusky antechinus (Antechinus arktos) is a recently discovered, endangered, carnivorous marsupial mammal endemic to the Tweed Shield Volcano caldera, straddling the border between Queensland and New South Wales in eastern Australia. The species' preference for cool, high‐altitude habitats makes it particularly vulnerable to a shifting climate as these habitats recede. Aside from basic breeding and dietary patterns, the species' ecology is largely unknown. Understanding fine‐scale habitat attributes preferred by this endangered mammal is critical to employ successful conservation management. Here, we assess vegetation attributes of known habitats over three sites at Springbrook and Border Ranges National Parks, including detailed structure data and broad floristic assessment. Floristic compositional assessment of the high‐altitude cloud rainforest indicated broad similarities. However, only 22% of plant species were shared between all sites indicating a high level of local endemism. This suggests a diverse assemblage of vegetation across A. arktos habitats. Habitat characteristics were related to capture records of A. arktos to determine potential fine‐scale structural habitat requirements. Percentage of rock cover and leaf litter were the strongest predictors of A. arktos captures across survey sites, suggesting a need for foraging substrate and cover. Habitat characteristics described here will inform predictive species distribution models of this federally endangered species and are applicable to other mammal conservation programs.  相似文献   

19.
Successful propagation of Cineraria saxifraga was achieved using apical softwood cuttings and micropropagation protocols. Plants propagated using micropropagation had a multiplication rate eight times that of the original population after 4 wk. Apical cuttings were subjected to a standard conductive freezing test to establish the freezing tolerance of the species. Results showed that cold‐acclimated plants had a 43% increased survival compared to non‐acclimated plants. Using plants established from tissue culture, two further freezing tests were conducted to establish the effects of surface water and container size on the frost resistance of this species. Surface water significantly decreased survival score compared to dry plants. Plants grown in small containers had a significant decrease in plant survival score compared to those grown in large containers.  相似文献   

20.
Abstract The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrush–grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire‐by‐microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage grouse habitat in south central Oregon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号