首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Levin DE 《Genetics》2011,189(4):1145-1175
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed.  相似文献   

3.
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)‐anchored cell wall proteins and 30 non‐GPI‐anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.  相似文献   

4.
It has been well known that auxin induces cell elongation through its effect on modifications of the cell wall. The present review will discuss cell wall modifications, physical and biochemical, as the background of the former, based on the experimental results from our laboratory and from others, with the historical background. Discussions will particularly put stress on the auxin effect on the cell wall in terms of the following studies, namely, (1) measurements of the mechanical property of the cell wall, and (2) biochemical studies on the polysaccharide molecules of the cell wall. This article is dedicated to Professor Anton N.J. Heyn for his 85th birthday.  相似文献   

5.
Highly purified cell walls of Chromatium vinosum were isolated by differential centrifugation, with or without Triton X-100 extraction. The isolated material had a protein composition similar to that of cell walls obtained by sucrose density gradient centrifugation. Twenty-two proteins were reproducibly detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 42-kilodalton protein was shown to account for 65% of the total cell wall protein. The majority of cell wall proteins were solubilized in sodium dodecyl sulfate at room temperature; however, they existed as high-molecular-weight complexes unless heated to 45 degrees C or above. The cell wall contained one heat-modifiable protein which migrated with an apparent molecular weight of 37,400 when solubilized at 70 degrees C or below, but which migrated with an apparent molecular weight of 52,500 if solubilized at 100 degrees C. The electrophoretic mobility of three proteins was modified by 2-mercaptoethanol. The majority of C. vinosum cell wall proteins had isoelectric points between pH 4.5 and 5.5, and the 42-kilodalton protein focused at pH 4.9. No proteins were detected which were analogous to the lipoprotein or peptidoglycan-associated proteins of the Enterobacteriaceae. Nearest-neighbor analysis with a reducible, cross-linking reagent indicated that three proteins, including the 42-kilodalton protein, associated with themselves. Most of the cell wall proteins were partially accessible to proteases in both intact cells and isolated cell walls. Protease treatment of the whole cell or isolated cell wall digested approximately an 11,000-molecular-weight portion of the 42-kilodalton protein.  相似文献   

6.
Thompson DS 《Annals of botany》2008,101(2):203-211
BACKGROUND: The biomechanical behaviour of plant cells depends upon the material properties of their cell walls and, in many cases, it is necessary that these properties are quite specific. Additionally, physiological regulation may require that target cells responding to hormonal signals or environmental factors are able to modulate these characteristics. ARGUMENT: This paper uses a rheological analysis of creep of elongating sunflower (Helianthus annuus) sunflower hypocotyls to demonstrate that the mechanical behaviour of plant cell walls is complex and involves multiple layered processes that can be distinguished from one another by the time-scale over which they lead to a change in tissue dimensions, their sensitivity to pH and temperature, and their responses to changes in spatial arrangement of the cell wall brought about by treatment with high M(r) PEG. Furthermore, it appears possible to regulate individual rheological processes, with limited effect on others, in order to modulate growth without affecting tissue structural integrity. It is proposed that control of the water content of the cell wall and therefore the space between cell wall polymers may be one mechanism by which differential regulation of cell wall biomechanical properties is achieved. This hypothesis is supported by evidence showing that enzyme extracts from growing tissues can cause swelling in cell wall fragments in suspension. IMPLICATIONS: The physiological implications of this complexity are then considered for growing tissues, stomatal guard cells and abscission cells. It is noted that, in each circumstance, a different combination of mechanical properties is required and that differential regulation of properties affecting behaviour over different time-scales is often necessary.  相似文献   

7.
The cell wall structure of the Gram-positive Corynebacterium glutamicum was evaluated by electron microscopy of thin sections after freeze-substitution and conventional fixation with glutaraldehyde. For the cell wall an overall thickness of approximately 32 nm was determined, with 8.5 nm corresponding to an outer layer, 6.5 nm to an electron translucent region (ETR) as found in mycobacteria and 17 nm to the peptidoglycan. Knob-like surface structures previously observed in freeze-fracture experiments were detected when cells were conventionally processed with a fixation using glutaraldehyde. By mild treatment with detergents approximately 20 proteins were extracted from the cell wall. From seven of these N-terminal amino acid sequences were determined.  相似文献   

8.
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell‐wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre‐eminent class of antibiotics—the β‐lactams, exemplified by the penicillins and cephalosporins—from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β‐lactams is bacterial cell‐wall destruction. In the monoderm (single membrane, Gram‐positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β‐lactam‐unreactive transpeptidase enzyme that functions in cell‐wall construction. In the diderm (dual membrane, Gram‐negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β‐lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell‐wall construction and cell‐wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β‐lactams. This review summarizes how the β‐lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.  相似文献   

9.
  1. 1. The cell wall of Chlorella ellipsoidea was fractionated intotwo components, alkali-soluble hemicellulose and alkali-insoluble"rigid wall". The former was composed of several neutral sugars,i.e. rhamnose, xylose, arabinose, mannose and galactose, andthe latter had glucosamine as a main constituent sugar.
  2. 2.Quantitative changes in both hemicellulose and "rigid wall"contents during the cell cycle were followed using synchronouslygrown cells. The two cell wall components showed markedly differentchanges. Hemicellulose increased in proportion to the enlargementof the cell surface area in the growing phase, while the "rigidwall" remained almost constant in this phase. The "rigid wall"increased only in the reproduction phase—the time of autosporeformation.
(Received September 26, 1977; )  相似文献   

10.
Stress response requires the precise modulation of gene expression in response to changes in growth conditions. This report demonstrates that selective nuclear mRNA degradation is required for both the cell wall stress response and the regulation of the cell wall integrity checkpoint. More specifically, the deletion of the yeast nuclear dsRNA-specific ribonuclease III (Rnt1p) increased the expression of the mRNAs associated with both the morphogenesis checkpoint and the cell wall integrity pathway, leading to an attenuation of the stress response. The over-expression of selected Rnt1p substrates, including the stress associated morphogenesis protein kinase Hsl1p, in wild-type cells mimicked the effect of RNT1 deletion on cell wall integrity, and their mRNAs were directly cleaved by the recombinant enzyme in vitro. The data supports a model for gene regulation in which nuclear mRNA degradation optimizes the cell response to stress and links it to the cell cycle.  相似文献   

11.
Plant cell wall is an example of a widespread natural supramolecular structure: its components are considered to be the most abundant organic compounds renewable by living organisms. Plant cell wall includes numerous components, mainly polysaccharidic; its formation is largely based on carbohydrate-carbohydrate interactions. In contrast to the extracellular matrix of most other organisms, the plant cell compartment located outside the plasma membrane is so structured that has been named “wall”. The present review summarizes data on the mechanisms of formation of this supramolecular structure and considers major difficulties and results of research. Existing approaches to the study of interactions between polysaccharides during plant cell wall formation have been analyzed, including: (i) characterization of the structure of natural polysaccharide complexes obtained during cell wall fractionation; (ii) analysis of the interactions between polysaccharides “at mixing in a tube”; (iii) study of the interactions between isolated individual plant cell wall matrix polysaccharides and microfibrils formed by cellulose-synthesizing microorganisms; and (iv) investigation of cell wall formation and modification directly in plant objects. The key stages in formation of plant cell wall supramolecular structure are defined and characterized as follows: (i) formation of cellulose microfibrils; (ii) interactions between matrix polysaccharides within Golgi apparatus substructures; (iii) interaction between matrix polysaccharides, newly secreted outside the plasma membrane, and cellulose microfibrils during formation of the latter; (iv) packaging of the formed complexes and individual polysaccharides in cell wall layers; and (v) modification of deposited cell wall layers.  相似文献   

12.
Summary Sonic oscillation was used for the purpose of obtaining clean, chemically intact cell walls. The rate of disruption was determined for cells ofHanseniaspora uvarum andSaccharomyces cerevisiae. The carbohydrate fractions of cell walls ofHanseniaspora uvarum, H. valbyensis, Kloeckera apiculata, Saccharomycodes ludwigii andSaccharmyces cerevisiae were shown to be similar. Chromatography of cell wall hydrolysates of all these species demonstrated that glucose and mannose were the only sugars present (in about equal amounts) besides traces of glucosamine. The cell walls ofH. uvarum contained 78.1 per cent carbohydrates, 7 per cent protein and approximately 0.05 per cent of chitin. Fractionation of the polysaccharides lead to a recovery of 83.3 per cent of the carbohydrates present (30.4 per cent glucan and 34.9 per cent mannan). Saccharomyces cerevisiae cell walls were found to have a carbohydrate content of 82.8 per cent, 6.5 per cent protein and a trace of chitin (0.04 per cent). Nadsonia elongata contained a relatively large amount of chitin (ca. 5 per cent) and lacked mannan in its cell walls. It was concluded thatHanseniaspora andSaccharomycodes are closely related to theSaccharomyceteae but they have little in common with species ofNadsonia.  相似文献   

13.
Mutations of the secondary cell wall   总被引:6,自引:0,他引:6  
It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis.  相似文献   

14.
15.
Unique aspects of the grass cell wall   总被引:1,自引:0,他引:1  
Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are linked together, and the abundance and importance of pectins, proteins and phenolic compounds. Recent advances, spurred by the availability of genomic resources for several plant species, include the characterization of cellulose synthase like (Csl) gene families that are unique to the grasses and the demonstration that members of one of those gene families, CslF, are responsible for making the mixed linkage glucans that are unique to the order Poales.  相似文献   

16.
Considering the importance of proteins in the structure and function of the cell wall of Candida albicans, we analyzed the cell wall subproteome of this important human pathogen by LC coupled to MS (LC-MS) using different protein extraction procedures. The analyzed samples included material extracted by hydrogen fluoride-pyridine (HF-pyridine), and whole SDS-extracted cell walls. The use of this latter innovative procedure gave similar data as compared to the analysis of HF-pyridine extracted proteins. A total of 21 cell wall proteins predicted to contain a signal peptide were identified, together with a high content of potentially glycosylated Ser/Thr residues, and the presence of a GPI motif in 19 of them. We also identified 66 "atypical" cell wall proteins that lack the above-mentioned characteristics. After tryptic removal of the most accessible proteins in the cell wall, several of the same expected GPI proteins and the most commonly found "atypical" wall proteins were identified. This result suggests that proteins are located not only at the cell wall surface, but are embedded within the cell wall itself. These results, which include new identified cell wall proteins, and comparison of proteins in blastospore and mycelial walls, will help to elucidate the C. albicans cell wall architecture.  相似文献   

17.
Growth of the plant cell wall   总被引:20,自引:0,他引:20  
Plant cells encase themselves within a complex polysaccharide wall, which constitutes the raw material that is used to manufacture textiles, paper, lumber, films, thickeners and other products. The plant cell wall is also the primary source of cellulose, the most abundant and useful biopolymer on the Earth. The cell wall not only strengthens the plant body, but also has key roles in plant growth, cell differentiation, intercellular communication, water movement and defence. Recent discoveries have uncovered how plant cells synthesize wall polysaccharides, assemble them into a strong fibrous network and regulate wall expansion during cell growth.  相似文献   

18.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls.  相似文献   

19.
The Staphylococcus aureus cell wall stress stimulon (CWSS) is activated by cell envelope-targeting antibiotics or depletion of essential cell wall biosynthesis enzymes. The functionally uncharacterized S.?aureus LytR-CpsA-Psr (LCP) proteins, MsrR, SA0908 and SA2103, all belong to the CWSS. Although not essential, deletion of all three LCP proteins severely impairs cell division. We show here that VraSR-dependent CWSS expression was up to 250-fold higher in single, double and triple LCP mutants than in wild type S.?aureus in the absence of external stress. The LCP triple mutant was virtually depleted of wall teichoic acids (WTA), which could be restored to different degrees by any of the single LCP proteins. Subinhibitory concentrations of tunicamycin, which inhibits the first WTA synthesis enzyme TarO (TagO), could partially complement the severe growth defect of the LCP triple mutant. Both of the latter findings support a role for S.?aureus LCP proteins in late WTA synthesis, as in Bacillus subtilis where LCP proteins were recently proposed to transfer WTA from lipid carriers to the cell wall peptidoglycan. Intrinsic activation of the CWSS upon LCP deletion and the fact that LCP proteins were essential for WTA-loading of the cell wall, highlight their important role(s) in S.?aureus cell envelope biogenesis.  相似文献   

20.
Xyloglucan hydrolase (XGH) has recently been purified from the cell wall of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls as a new type of xyloglucan-degrading enzyme [Tabuchi et al. (2001) Plant Cell Physiol. 42: 154]. In the present study, the effects of XGH on the mechanical properties of the cell wall and on the level and the molecular size of xyloglucans within the native wall architecture were examined in azuki bean epicotyls. When the epidermal tissue strips from the growing regions of azuki bean epicotyls were incubated with XGH, the mechanical extensibility of the cell wall dramatically increased. XGH exogenously applied to cell wall materials (homogenates) or epidermal tissue strips decreased the amount of xyloglucans via the solubilization of the polysaccharides. Also, XGH substantially decreased the molecular mass of xyloglucans in both materials. These results indicate that XGH is capable of hydrolyzing xyloglucans within the native cell wall architecture and thereby increasing the cell wall extensibility in azuki bean epicotyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号