首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.  相似文献   

3.
4.
Premelanosomes are presumed to be essential for melanogenesis in melanocytes and pre-natal retinal pigment epithelium (RPE) cells. We analysed melanin synthesis in adenoviral-transduced tyrosinase-gene-expressing amelanotic RPE (ARPE) 19 cells to determine whether premelanosome formation is needed for post-natal melanogenesis. The synthesis of melanogenic proteins and melanin granules was investigated by immunocytochemistry and light and electron microscopy. The occurrence of tyrosinase was analysed ultrastructurally by dihydroxyphenylalanine histochemistry. The viability of transduced cell cultures was examined via MTT assay. We found active tyrosinase in small granule-like vesicles throughout the cytoplasm and in the endoplasmic reticulum and nuclear membrane. Tyrosinase was also associated with multi-vesicular and multi-lamellar organelles. Typical premelanosomes, structural protein PMEL17, tyrosinase-related protein 1 and classic melanosomal stages I–IV were not detected. Instead, melanogenesis took place inside multi-vesicular and multi-lamellar bodies of unknown origin. Viability was not affected up to 10 days after transduction. We thus demonstrate a pathway of melanin formation lacking typical hallmarks of melanogenesis.  相似文献   

5.
Cultured human melanocytes derived from different skin types responded to frequent treatment with ultraviolet (UV) light with increased melanin synthesis, decreased proliferation, and morphologic signs of aging. These effects were augmented by increased frequency of irradiation with 15.5 mJ/cm2 UV light. Stimulation of melanogenesis by UV light involved an increase in tyrosinase activity, without any change in the amounts of either tyrosinase or tyrosinase-related protein (TRP)-1, and a decrease in the amount of TRP-2, as determined by Western blot analysis. These results are different from the mechanisms by which other melanogenic agents, such as cholera toxin and isobutyl methylxanthine, stimulated melanogenesis, whereby the amounts of tyrosinase, TRP-1 and TRP-2 were increased. The decrease in the amount of TRP-2 might be significant in that it might alter the properties of the newly synthesized melanin. The UV irradiation protocol that was followed blocked melanocytes in G2-M phase of the cell cycle without compromising cellular viability. Following three rounds of UV irradiation, melanocytes could recover from the growth arrest and resume proliferation. Treatment with 0.1 μM α-melanocyte stimulating hormone (α-MSH) postirradiation enhanced the melanogenic effect of UV light and stimulated the melanocytes to proliferate. The effects of α-MSH on the UV induced responses and their implications on photocarcinogenesis are being further investigated. Analyzing the mechanisms by which UV light exposure affects normal melanocytes might lead to a better understanding of how these cells undergo malignant transformation, and why individuals with different skin types differ in their susceptibility to skin cancers.  相似文献   

6.
The human hair cycle is characterized by successive phases of growth and involution that imply tissue regression and regeneration. As a consequence, the hair melanin unit has to be renewed in a cyclic manner. Actually, the behavior of human hair follicle melanocytes throughout the hair cycle has been poorly studied. Thus, the origin of melanocytes present in the bulb after human hair regeneration is still not clarified, and neither are the events that control the melanin biosynthesis activity in the human hair bulb. In this study, we showed at the cellular level that in human pigmented hair follicles, the expression of tyrosinase and tyrosinase-related protein-1 (TRP-1) was detectable during the anagen phases III/IV through VI, only in those melanocytes which were located in the bulb. During the catagen phase, the two evaluated melanogenic enzymes were detectable no more, although melanocytes were still present in the preceding bulbar area. The epithelial column of catagen follicles and the capsule of telogen follicles also contained inactive melanocytes as evidenced by pMel-17 labeling. At the induction of a new anagen hair follicle, some melanocytes were committed to cell division, but only when located in the nascent bulb close to the dermal papilla. Our results emphasize the close relationship between melanogenesis and the hair cycle and suggest that in humans, melanogenesis is restricted to anagen hair follicles not because of the regulation of tyrosinase activity, but because of melanogenic enzyme expression, e.g., tyrosinase and TRP-1. Furthermore, the fact that in the newly developing anagen hair follicles, cell-division commitment and tyrosinase and TRP-1 expression were observed in melanocytes only when located in the nascent bulb suggests a highly regio-specific melanocyte stimulation in early the anagen phase.  相似文献   

7.
Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.  相似文献   

8.
The expression of various melanogenic proteins, including tyrosinase, the tyrosinase-related proteins 1 (TRP1) and 2 (TRP2/DOPAchrome tautomerase), and the silver protein in human melanocytes was studied in six different human melanoma cell lines and compared to a mouse derived melanoma cell line. Analysis of the expression of tyrosinase, TRP1, TRP2, and the silver protein using flow cytometry revealed that in general there was a positive correlation between melanin formation and the expression of those melanogenic enzymes. Although several of the melanoma cell lines possessed significant activities of TRP2, the levels of DOPAchrome tautomerase in extracts of human cells were relatively low compared to those in murine melanocytes. Melanins derived from melanotic murine JB/MS cells, from melanotic human Ihara cells and HM-IY cells, from sepia melanin, and from C57BL/6 mouse hair were chemically analyzed. JB/MS cells, as well as Ihara cells and HM-TY cells, possessed significant amounts of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derived melanins, this being dependent on the activity of TRP2. Kinetic HPLC assays showed that 5,6-dihydroxyindole (DHI) produced during melanogenesis was metabolized quickly to melanin in pigmented KHm-1/4 cells, whereas DHI was stable in amelanotic human SK-MEL-24 cells. A melanogenic inhibitor that has been purified from SK-MEL-24 cells that suppressed oxidation of DHI in the presence or absence of tyrosinase, but had no effect on DHICA oxidation. The sum of these results suggest that the expression of melanogenic enzymes as well as the activity of a melanogenic inhibitor are critical to the production of melanin synthesis in humans.  相似文献   

9.
10.
11.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

12.
13.
14.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

15.
Enzymatic control of pigmentation in mammals.   总被引:34,自引:0,他引:34  
Visible pigmentation in mammals results from the synthesis and distribution of melanin in the skin, hair bulbs, and eyes. The melanins are produced in melanocytes and can be of two basic types: eumelanins, which are brown or black, and phaseomelanins, which are red or yellow. In mammals typically there are mixtures of both types. The most essential enzyme in this melanin biosynthetic pathway is tyrosinase and it is the only enzyme absolutely required for melanin production. However, recent studies have shown that mammalian melanogenesis is not regulated solely by tyrosinase at the enzymatic level, and have identified additional melanogenic factors that can modulate pigmentation in either a positive or negative fashion. In addition, other pigment-specific genes that are related to tyrosinase have been cloned which encode proteins that apparently work together at the catalytic level to specify the quantity and quality of the melanins synthesized. Future research should provide a greater understanding of the enzymatic interactions, processing, and tissue specificity that are important to pigmentation in mammals.  相似文献   

16.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

17.
The tyrosinase family comprises three members, tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and dopachrome tautomerase (Dct). Null mutations and deletions at the Tyr and Tyrp1 loci are known and phenotypically affect coat color due to the absence of enzyme or intracellular mislocalization. At the Dct locus, three mutations are known that lead to pigmentation phenotype. However, these mutations are not null mutations, and we therefore set out to generate a null allele at the Dct gene locus by removing exon 1 of the mouse Dct gene. Mice deficient in Dct [Dct(tm1(Cre)Bee)] lack Dct mRNA and dopachrome tautomerase protein. They are viable and do not show any abnormalities in Dct-expressing sites such as skin, retinal pigment epithelium, or brain. However, the mice show a diluted coat color phenotype, which is due to reduced melanin content in hair. Primary melanocytes from Dct knockout mice are viable in culture and show a normal distribution of tyrosinase and tyrosinase-related protein 1. In comparison to the knockout, the slaty mutation (Dct(slt)/Dct(slt)) has less melanin and affects growth of primary melanocytes severely. In summary, we have generated a knockout of the Dct gene in mice with effects restricted to pigment production and coat color.  相似文献   

18.
19.
Although L‐tyrosine is well known for its melanogenic effect, the contribution of D‐tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L‐tyrosine, D‐tyrosine dose‐dependently reduced the melanin contents of human MNT‐1 melanoma cells and primary human melanocytes. In addition, 500 μM of D‐tyrosine completely inhibited 10 μM L‐tyrosine‐induced melanogenesis, and both in vitro assays and L‐DOPA staining MNT‐1 cells showed that tyrosinase activity is reduced by D‐tyrosine treatment. Thus, D‐tyrosine appears to inhibit L‐tyrosine‐mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D‐tyrosine inhibited melanogenesis induced by α‐MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D‐tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D‐tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte‐derived cells.  相似文献   

20.
The pigmentation of mammalian skin and hair develops through the interaction of two basic cell types — pigment donors and recipients. The pigment donors are melanocytes, which produce and distribute melanin through specialized structures. The pigment recipients are epithelial cells, which acquire melanin and put it to use, collectively yielding the pigmentation visible to the eye. This review will focus on the pigment recipients, the historically less understood cell type. These end‐users of pigment are now known to exert a specialized control over the patterning of pigmentation, as they identify themselves as melanocyte targets, recruit pigment donors, and stimulate the transfer of melanin. As such, this review will discuss the evidence that the skin is like a coloring book: the pigment recipients create a ‘picture,’ a blueprint for pigmentation, which is colorless initially but outlines where pigment should be placed. Melanocytes then melanize the recipients and ‘color in’ the picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号