首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In budding yeast, commitment to DNA replication during the normal cell cycle requires degradation of the cyclin-dependent kinase (CDK) inhibitor Sic1. The G1 cyclin-CDK complexes Cln1-Cdk1 and Cln2-Cdk1 initiate the process of Sic1 removal by directly catalyzing Sic1 phosphorylation at multiple sites. Commitment to DNA replication during meiosis also appears to require Sic1 degradation, but the G1 cyclin-CDK complexes are not involved. It has been proposed that the meiosis-specific protein kinase Ime2 functionally replaces the G1 cyclin-CDK complexes to promote Sic1 destruction. To investigate this possibility, we compared Cln2-Cdk1 and Ime2 protein kinase activities in vitro. Both enzyme preparations were capable of catalyzing phosphorylation of a GST-Sic1 fusion protein, but the phosphoisomers generated by the two activities had significantly different electrophoretic mobilities. Furthermore, mutation of consensus CDK phosphorylation sites in Sic1 affected Cln2-Cdk1- but not Ime2-dependent phosphorylation. Phosphoamino acid analysis and phosphopeptide mapping provided additional evidence that Cln2-Cdk1 and Ime2 targeted different residues within Sic1. Examination of other substrates both in vitro and in vivo also revealed differing specificities. These results indicate that Ime2 does not simply replace G1 cyclin-CDK complexes in promoting Sic1 degradation during meiosis.  相似文献   

2.
Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle   总被引:33,自引:0,他引:33  
Cyclin-dependent kinases are the key regulators of cell-cycle transitions. In mammalian cells, Cdk2, Cdk4, Cdk6 and associated cyclins control the G(1) to S phase transition. Because proper regulation of this transition is critical for an organism's survival, these protein kinases are exquisitely regulated at different mechanistic levels and in response to a large variety of intrinsic and extrinsic signals.  相似文献   

3.
Phosphorylation of the retinoblastoma protein (pRB) is assumed to regulate its growth-controlling function. Moreover, hypophosphorylated and hyperphosphorylated forms of pRB can be distinguished by virtue of the distinct affinities with which they bind to the cell nucleus. This property allows the identification of individual cell nuclei that contain pRB in one or the other form. We show here that after cells emerge from a quiescent (G0) state, conversion of their complement of pRB into a hyperphosphorylated form occurs in late G1, preceding entry into S phase by several hours. Thus, contrary to earlier reports, pRB phosphorylation is not co-ordinated with the G1-S transition and may not directly regulate it. A distinct set of phosphopeptides is found exclusively in those forms of pRB that show the loose nuclear association characteristic of the hyperphosphorylated form of pRB. Another set of phosphopeptides is found with both hypophosphorylated and hyperphosphorylated forms. This suggests the existence of distinct patterns of phosphorylation that are associated with different subsets of pRB molecules. We conclude that substantial phosphorylation of pRB exists in G1 even prior to the hyperphosphorylation point. Cyclin-dependent kinases can cause a liberation of pRB from cell nuclei in vitro. Phosphorylation by members of this kinase family is therefore likely to be directly involved in the change in nuclear affinity in vivo and the associated changes in pRB functioning.  相似文献   

4.
D-type cyclin-dependent kinases (Cdk4 and Cdk6) regulate the G1 to S phase progression of the mammalian cell cycle. It has been suggested that Cdk4 and Cdk6 may have distinct functions in vivo, even though they are indistinguishable biochemically. Here we show that although these Cdks phosphorylate multiple residues in pRB, they do so with different residue selectivities in vitro; Thr821 and Thr826 are preferentially phosphorylated by Cdk6 and Cdk4, respectively. This raises the possibility different substrate specificities lead to their different roles in the regulation of cellular events. Furthermore, our results indicate the new concept that Cdk itself contributes to substrate recognition.  相似文献   

5.
In Xenopus development the mid-blastula transition (MBT) marks a dramatic change in response of the embryo to ionizing radiation. Whereas inhibition of cyclin D1-Cdk4 and cyclin A2-Cdk2 by p27(Xic1) has been linked to cell cycle arrest and prevention of apoptosis in embryos irradiated post-MBT, distinct roles for these complexes during apoptosis are evident in embryos irradiated pre-MBT. Cyclin A2 is cleaved by caspases to generate a truncated complex termed Delta N-cyclin A2-Cdk2, which is kinase active, not inhibited by p27(Xic1), and not sensitive to degradation by the ubiquitin-mediated proteasome pathway. Moreover, Delta N-cyclin A2-Cdk2 has an expanded substrate specificity and can phosphorylate histone H2B at Ser-32, which may facilitate DNA cleavage. Consistent with a role for cyclin A2 in apoptosis, the addition of Delta N-cyclin A2-Cdk2, but not full-length cyclin A2-Cdk2, to Xenopus egg extracts triggers apoptotic DNA fragmentation even when caspases are not activated. Similarly, cyclin D1 is targeted by caspases, and the generated product exhibits higher affinity for p27(Xic1), leading to reduced phosphorylation of the retinoblastoma protein (pRB) during apoptosis. These data suggest that caspase cleavage of both cyclin D1-Cdk4 and cyclin A2-Cdk2 promotes specific apoptotic events in embryos undergoing apoptosis in response to ionizing radiation.  相似文献   

6.
Assembly of a mitotic spindle requires the accurate regulation of microtubule dynamics which is accomplished, at least in part, by phosphorylation-dephosphorylation reactions. Here we have investigated the role of serine-threonine phosphatases in the control of microtubule dynamics using specific inhibitors in Xenopus egg extracts. Type 2A phosphatases are required to maintain the short steady-state length of microtubules in mitosis by regulating the level of microtubule catastrophes, in part by controlling the the microtubule-destabilizing activity and phosphorylation of Op18/stathmin. Type 1 phosphatases are only required for control of microtubule dynamics during the transitions into and out of mitosis. Thus, although both type 2A and type 1 phosphatases are involved in the regulation of microtubule dynamics, they have distinct, non-overlapping roles.  相似文献   

7.
《Cellular signalling》2014,26(9):1846-1852
The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor–Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.  相似文献   

8.
Human B cells express four immunoglobulin G receptors, FcgammaRIIa, FcgammaRIIb1, FcgammaRIIb2, and FcgammaRIIc. Coligation of either FcgammaRII isoform with the B-cell antigen receptor (BCR) results in the abrogation of B-cell activation, but only the FcgammaRIIa/c and FcgammaIIb1 isoforms become phosphorylated. To identify the FcgammaRII-phosphorylating protein tyrosine kinase (PTK), we used the combination of an in vitro and an in vivo approach. In an in vitro assay using recombinant cytoplasmic tails of the different FcgammaRII isoforms as well as tyrosine exchange mutants, we show that each of the BCR-associated PTKs (Lyn, Blk, Fyn, and Syk) shows different phosphorylation patterns with regard to the different FcgammaR isoforms and point mutants. While each PTK phosphorylated FcgammaRIIa/c, FcgammaRIIb1 was phosphorylated by Lyn and Blk whereas FcgammaRIIb2 became phosphorylated only by Blk. Mutants lacking both tyrosine residues of the immune receptor tyrosine-based activation motif (ITAM) of FcgammaRIIa/c were not phosphorylated by Blk and Fyn, while Lyn-mediated phosphorylation was dependent on the presence of the C-terminal tyrosine of the ITAM. Results obtained in assays using an FcgammaR- B-cell line transfected with wild-type or mutated FcgammaRIIa demonstrated that exchange of the C-terminal tyrosine of the ITAM of FcgammaRIIa/c was sufficient to abolish FcgammaRIIa/c phosphorylation in B cells. Additionally, we could show that Lyn and Fyn bind to FcgammaRIIa/c, with the ITAM being necessary for association. Comparison of the phosphorylation pattern of each PTK observed in vitro with the phosphorylation pattern observed in vivo suggests that Lyn is the most likely candidate for FcgammaRIIa/c and FcgammaRIIb1 phosphorylation in vivo.  相似文献   

9.
Parathyroid hormone-related protein (PTHrP) is expressed by a wide variety of cells and is considered to act as a secreted factor; however, evidence is accumulating for it to act in an intracrine manner. We have determined that PTHrP localizes to the nucleus at the G1 phase of the cell cycle and is transported to the cytoplasm when cells divide. PTHrP contains a putative nuclear localization sequence (NLS) (residues 61-94) similar to that of SV40 T-antigen, which may be implicated in the nuclear import of the molecule. We identified that Thr85 immediately prior to the NLS of PTHrP was phosphorylated by CDC2-CDK2 and phosphorylation was cell cycle-dependent. Mutation of Thr85 to Ala85 resulted in nuclear accumulation of PTHrP, while mutation to Glu85 to mimic a phosphorylated residue resulted in localization of PTHrP to the cytoplasm. Combined, the data demonstrate that the intracellular localization of PTHrP is phosphorylation- and cell cycle-dependent, and such control further supports a potential intracellular role (10,34,35) for PTHrP.  相似文献   

10.
11.
12.
13.
Transforming Growth Factor-beta (TGFbeta) is known to be a negative regulator of G1 cyclin/cdk activity. It is not clear whether TGFbeta has any effect on G2 checkpoint kinases. We have found that TGFbeta downregulated the expression of several G2 checkpoint kinases including cdc2, cyclin B1, and cdc25c without causing cell accumulation in G2/M phases in two human leukemia cell lines. The inhibition was time-dependent with a maximal inhibition being observed by 24h for cyclin B1 and cdc2 and by 48h for cdc25c. The inhibition was not a result of G1 arrest but a direct effect of TGFbeta which downregulates their expression at mRNA level. In proliferating cells, there was a significant formation of cdc2-pRb complexes, which was decreased to 30% of control levels by 48h after initiating TGFbeta treatment. Cdc2 showed a marked kinase activity on GST-Rb protein in proliferating cells detected by in vitro kinase assay, which was downregulated in response to TGFbeta. In addition, TGFbeta caused a rapid and transient dephosphorylation of cdc2 (Tyr15) and cdc25c (Ser216) for about 2-3h before a dramatic decrease of both molecules by 48h. Taken together, our data suggest that TGFbeta has a direct inhibitory effect on G2 checkpoint kinases, which is regulated at mRNA level. The transient activation of cdc2 and cdc25c and subsequent inhibition of cdc2, cyclin B1, and cdc25c could amplify TGFbeta-induced G1 arrest and growth inhibition.  相似文献   

14.
The prostanoid prostacyclin (PGI2) inhibits proliferation of cultured vascular SMCs by inhibiting cell cycle progression from G1 to S phase. Progression through G1 phase is regulated by the sequential activation of the G1 phase cyclin-dependent kinases (cdks). Recent studies have shown that PGI2-dependent activation of its receptor, IP, inhibits G1 phase progression by blocking the degradation of p27 and the activation of cyclin E-cdk2. High Density Lipoproteins (HDL) and its associated apolipoprotein, ApoE, also inhibit S phase entry of vascular SMCs, and the effects of HDL and ApoE are, at least in part, also mediated by the production of PGI2. The antimitogenic effects of hyaluronan may also be controlled by PGI2. This review summarizes the effects of PGI2 on the G1 phase cyclin-cdks and discusses the potential role of PGI2 as a common component of multiple extracellular signals that attenuate the proliferation of vascular SMCs.  相似文献   

15.
Anti-apoptotic activity of BCL-2 is mediated by phosphorylation at the endoplasmic reticulum (ER), but how this phosphorylation is regulated and the mechanism(s) by which it regulates apoptosis are unknown. We purified macromolecular complexes containing BCL-2 from ER membranes and found that BCL-2 co-purified with the main two subunits of the serine/threonine phosphatase, PP2A. The association of endogenous PP2A and BCL-2 at the ER was verified by co-immunoprecipitation and microcystin affinity purification. Knock down or pharmacological inhibition of PP2A caused degradation of phosphorylated BCL-2 and led to an overall reduction in BCL-2 levels. We found that this degradation was due to the action of the proteasome acting selectively at the ER. Conversely, overexpression of PP2A caused elevation in endogenous BCL-2. Most importantly, we found that PP2A knock down sensitized cells to several classes of death stimuli (including ER stress), but this effect was abolished in a genetic background featuring knock in of a non-phosphorylatable BCL-2 allele. These studies support the hypothesis that PP2A-mediated dephosphorylation of BCL-2 is required to protect BCL-2 from proteasome-dependent degradation, affecting resistance to ER stress.  相似文献   

16.
We have studied the initial effects of adenovirus E1A expression on the retinoblastoma (RB) gene product in normal quiescent cells. Although binding of the E1A products to pRB could, in theory, make pRB phosphorylation unnecessary for cell cycle progression, we have found that the 12S wild-type E1A product is capable of inducing phosphorylation of pRB in normal quiescent cells. The induction of pRB phosphorylation correlates with E1A-mediated induction of p34cdc2 expression and kinase activity, consistent with the possibility that p34cdc2 is a pRB kinase. Expression of simian virus 40 T antigen induces similar effects. Induction of pRB phosphorylation is independent of the pRB binding activity of the E1A products; E1A domain 2 mutants do not bind detectable levels of pRB but remain competent to induce pRB phosphorylation and to activate cdc2 protein kinase expression and activity. Although the kinetics of induction are slower, domain 2 mutants induce wild-type levels of pRB phosphorylation and host cell DNA synthesis and yet fail to induce cell proliferation. These results imply that direct physical interaction between the RB and E1A products does not play a required role in the early stages of E1A-mediated cell cycle induction and that pRB phosphorylation is not, of itself, sufficient to allow quiescent cells to divide. These results suggest that the E1A products do not need to bind pRB in order to stimulate resting cells to enter the cell cycle. Indeed, a more important role of the RB binding activity of the E1A products may be to prevent dividing cells from returning to G0.  相似文献   

17.
The protein serine-threonine kinase Akt mediates cell survival signaling initiated by various growth-promoting factors such as insulin. Here we report that SEK1 is a target of Akt in intact cells. Insulin inhibited the anisomycin-induced stimulation of both endogenous SEK1 and its substrate c-Jun N-terminal kinase (JNK), but not that of the upstream kinase MEKK1, in 293T cells. The inhibitory action of insulin on SEK1 or JNK1 activation was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002. Expression of a constitutively active form of Akt also inhibited both SEK1 and JNK1 activation, but not that of MEKK1, in transfected 293T cells. Co-immunoprecipitation analysis revealed that endogenous Akt physically interacted with endogenous SEK1 in cells and that this interaction was promoted by insulin. In vitro and in vivo (32)P labeling indicated that Akt phosphorylated SEK1 on serine 78. The SEK1 mutant SEK1(S78A) was resistant to Akt-induced inhibition. Finally, activated Akt inhibited SEK1-mediated apoptosis, and this effect of Akt was prevented by overexpression of SEK(S78A). Taken together, these results suggest that Akt suppresses stress-activated signaling by targeting SEK1.  相似文献   

18.
PNUTS, Phosphatase 1 NUclear Targeting Subunit, is a recently described protein that targets protein phosphatase 1 (PP1) to the nucleus. In the present study, we characterized the biochemical properties of PNUTS. A variety of truncation and site-directed mutants of PNUTS was prepared and expressed either as glutathione S-transferase fusion proteins in Escherichia coli or as FLAG-tagged proteins in 293T cells. A 50-amino acid domain in the center of PNUTS mediated both high affinity PP1 binding and inhibition of PP1 activity. The PP1-binding domain is related to a motif found in several other PP1-binding proteins but is distinct in that Trp replaces Phe. Mutation of the Trp residue essentially abolished the ability of PNUTS to bind to and inhibit PP1. The central PP1-binding domain of PNUTS was an effective substrate for protein kinase A in vitro, and phosphorylation substantially reduced the ability of PNUTS to bind to PP1 in vitro and following stimulation of protein kinase A in intact cells. In vitro RNA binding experiments showed that a C-terminal region including several RGG motifs and a novel repeat domain rich in His and Gly interacted with mRNA and single-stranded DNA. PNUTS exhibited selective binding for poly(A) and poly(G) compared with poly(U) or poly(C) ribonucleotide homopolymers, with specificity being mediated by distinct regions within the domain rich in His and Gly and the domain containing the RGG motifs. Finally, a PNUTS-PP1 complex was isolated from mammalian cell lysates using RNA-conjugated beads. Together, these studies support a role for PNUTS in protein kinase A-regulated targeting of PP1 to specific RNA-associated complexes in the nucleus.  相似文献   

19.
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.  相似文献   

20.
We have examined the levels of gene expressions and activities of protein phosphatases, PP1 and PP2A, in rat regenerating livers. PP1 alpha mRNA started to increase from 6 h after partial hepatectomy (PH) and showed two peaks at 12 and 48 h. PP2A mRNA level showed two peaks at 6 and 10-12 h. Protein phosphatase activities were determined both in non-nuclear fraction and in nuclei. While spontaneous PP1 activity in non-nuclear fraction was nearly constant, potential PP1 activity revealed by Co(2+)-trypsin treatment showed a small peak between 7 and 12 h. In nuclei, both spontaneous and potential PP1 activity began to increase from 4-7 h after PH, reached a maximum (about 2.5-fold over control levels) at 12 h, the time which corresponds to the G1 to S transition in the cell cycle, and then declined back to control levels by 7 days. PP2A activity in non-nuclear fraction was nearly constant in both spontaneous and potential forms. PP2A activity in both forms in nuclei was very low throughout. These results suggest the possibility that PP1 in nuclei plays some role in the G1 to S transition in the cell cycle of hepatocyte proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号