首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a variety of detergents and neutral salts on the structure of the eukaryotic high molecular mass aminoacyl-tRNA synthetase complex have been directly determined by observing alterations in the composition, sedimentation behavior, and electron microscopic appearance of the rabbit reticulocyte complex. The intact complex is shown to exhibit the enzymatic activities, polypeptide composition, relative stoichiometry, and morphological features that are characteristic of this eukaryotic multienzyme particle. The structure of the high molecular mass aminoacyl-tRNA synthetase complex is seen to be resistant to both ionic and nonionic detergents. However, both 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and deoxycholate induce formation of large protein aggregates. In contrast, the chaotropic salts LiCl and NaSCN both selectively remove individual polypeptides from the high molecular mass aminoacyl-tRNA synthetase complex and promote formation of specific particulate subcomplexes which have distinct sizes, polypeptide compositions, and structural features. These data support the view that many of the protein interactions within the high molecular mass amino-acyl-tRNA synthetase complex are hydrophobic in nature. This study also provides direct evidence that the complex contains a core of tightly interacting synthetases onto which the remaining polypeptides are arrayed. The structural alterations observed here may account for the ability of these reagents to markedly inhibit several enzymatic activities within the complex.  相似文献   

2.
A high molecular mass complex of aminoacyl-tRNA synthetases is readily isolated from a variety of eukaryotes. Although its composition is well characterized, knowledge of its structure and organization is still quite limited. This study uses antibodies directed against prolyl-tRNA synthetase for immunoelectron microscopic localization of the bifunctional glutamyl-/prolyl-tRNA synthetase. This is the first visualization of a specific site within the multisynthetase complex. Images of immunocomplexes are presented in the characteristic views of negatively stained multisynthetase complex from rabbit reticulocytes. As described in terms of a three domain working model of the structure, in "front" views of the particle and "intermediate" views, the primary antibody binding site is near the intersection between the "base" and one "arm." In "side" views, where the particle is rotated about its long axis, the binding site is near the midpoint. "Top" and "bottom" views, which appear as square projections, are also consistent with the central location of the binding site. These data place the glutamyl-/prolyl-tRNA synthetase polypeptide in a defined area of the particle, which encompasses portions of two domains, yet is consistent with the previous structural model.  相似文献   

3.
The functional interaction of Arg-, Ile-, Leu-, Lys- and Met-tRNA synthetases occurring within the same rat liver multienzyme complex are investigated by examining the enzymes catalytic activities and inactivation kinetics. The Michaelis constants for amino acids, ATP and tRNAs of the dissociated aminoacyl-tRNA synthetases are not significantly different from those of the high-Mr multienzyme complex, except in a few cases where the Km values of the dissociated enzymes are higher than those of the high-Mr form. The maximal aminoacylation velocities of the individual aminoacyl-tRNA synthetases are not affected by the presence of simultaneous aminoacylation by another synthetase occurring within the same multienzyme complex. Site-specific oxidative modification by ascorbate and nonspecific thermal inactivation of synthetases in the purified rat liver 18 S synthetase complex are examined. Lys- and Arg-tRNA synthetases show remarkably parallel time-courses in both inactivation processes. Leu- and Met-tRNA synthetases also show parallel kinetics in thermal inactivation and possibly oxidative inactivation. Ile-tRNA synthetase shows little inactivation in either process. The oxidative inactivation of Lys- and Arg-tRNA synthetases can be reversed by addition of dithiothreitol. These results suggest that synthetases within the same high-Mr complex catalyze aminoacylation reactions independently; however, the stabilities of some of the synthetases in the multienzyme complex are coupled. In particular, the stability of Arg-tRNA synthetase depends appreciably on its association with fully active Lys-tRNA synthetase.  相似文献   

4.
A subset of eukaryotic aminoacyl-tRNA synthetases (a-RS) are contained in a multienzyme complex for which little structural detail is known. Three reversible chemical crosslinking reagents have been used to investigate the arrangement of polypeptides within this particle as isolated from rabbit reticulocytes. Identification of the crosslinked protein pairs was accomplished by two-dimensional SDS diagonal gel electrophoresis. Seventeen neighboring protein pairs have been identified. Eight are seen with at least two reagents: K-RS:p38, D-RS:K-RS, R-RS dimer, K-RS dimer, K-RS:Q-RS, E/P-RS:K-RS, E/P-RS:I-RS, and Q-RS with one of the nonsynthetase proteins. Nine more are observed with one reagent: D-RS dimer, R-RS:p43, D-RS:Q-RS, D-RS:M-RS, K-RS:L-RS, I-RS:R-RS, D-RS:E/P-RS, I-RS:Q-RS, I-RS:L-RS. One trimeric association is seen: E/P-RS:I-RS:L-RS. The observed neighboring protein pairs suggest that the polypeptides within the aminoacyl-tRNA synthetase complex are distributed in three structural domains of similar mass. These can be arranged in a U-shaped particle in which each "arm" is considered a domain and the third forms the "base" of the structure. The arms have been termed domain I (D-RS, M-RS, Q-RS) and domain II (K-RS, R-RS), with domain III (E/P-RS, I-RS, L-RS) assigned to the base. The smaller proteins (p38, p43) may bridge the domains. This proposed spatial relationship of these domains, as well as their compositions, are consistent with earlier studies. Thus, this study provides an initial three-dimensional working model of the arrangement of polypeptides within the multienzyme aminoacyl-tRNA synthetase complex.  相似文献   

5.
In higher eukaryotes, nine aminoacyl-tRNA synthetases are associated within a multienzyme complex which is composed of 11 polypeptides with molecular masses ranging from 18 to 150 kDa. We have cloned and sequenced a cDNA from Drosophila encoding the largest polypeptide of this complex. We demonstrate here that the corresponding protein is a multifunctional aminoacyl-tRNA synthetase. It is composed of three major domains, two of them specifying distinct synthetase activities. The amino and carboxy-terminal domains were expressed separately in Escherichia coli, and were found to catalyse the aminoacylation of glutamic acid and proline tRNA species, respectively. The central domain is made of six 46 amino acid repeats. In prokaryotes, these two aminoacyl-tRNA synthetases are encoded by distinct genes. The emergence of a multifunctional synthetase by a gene fusion event seems to be a specific, but general attribute of all higher eukaryotic cells. This type of structural organization, in relation to the occurrence of multisynthetase complexes, could be a mechanism to integrate several catalytic domains within the same particle. The involvement of the internal repeats in mediating complex assembly is discussed.  相似文献   

6.
The major high molecular weight complex of aminoacyl-tRNA synthetases is purified about 1000-fold with 30% yield from rat liver. The synthetase complex sediments at 24 S with a molecular weight of 900,000 +/- 75,000 and contains aminoacylation activities for lysine, arginine, isoleucine, leucine, methionine, glutamine, glutamate, and proline. The 24 S synthetase complex dissociates into 21 S, 18 S, 13 S, 12 S, and 10 S complexes with specific enzymatic activities. Dissociation of the 24 S complex into active free synthetases is achieved by hydrophobic interaction chromatography. The disassembly of the synthetase complex is consistent with the structural model of a heterotypic multienzyme complex and suggests that the complex formation is due to the specific intermolecular interactions among the synthetases.  相似文献   

7.
Lysyl-tRNA synthetase occurs in the high molecular weight form in rat liver. The high molecular weight lysyl-tRNA synthetase has been previously demonstrated to exist as multienzyme complexes of aminoacyl-tRNA synthetases. The multienzyme complexes can be dissociated by hydrophobic interaction chromatography and yield fully active, free lysyl-tRNA synthetase. The free form is found to be twice as active as the complexed form in lysylation. Bisubstrate and product inhibition kinetics of lysylation are systematically carried out for highly purified free lysyl-tRNA synthetase and the 18 S synthetase complex. Surprisingly, the two enzyme forms exhibit distinctly different kinetic patterns in bisubstrate and product inhibition kinetics under identical conditions. The 18 S synthetase complex shows kinetic patterns consistent with an ordered bi uni uni bi ping pong mechanism, while the results of free lysyl-tRNA synthetase do not. We conclude that structural organization of lysyl-tRNA synthetase beyond quaternary structure of proteins may alter the enzyme behavior.  相似文献   

8.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of the multienzyme aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free protein. The two forms are thought to be identical except for an extra peptide extension at the NH2-terminus of the larger form which is required for its association with the complex, but is unessential for catalytic activity. It has been suggested that interactions among synthetases in the multienzyme complex are mediated by hydrophobic domains on these peptide extensions of the individual proteins. To test this model we have purified to homogeneity the larger form of arginyl-tRNA synthetase and compared its hydrophobicity to that of its low molecular weight counterpart. We show that whereas the smaller protein displays no hydrophobic character, the larger protein demonstrates a high degree of hydrophobicity. No lipid modification was found on the high molecular weight protein indicating that the amino acid sequence itself is responsible for its hydrophobic properties. These findings support the proposed model for synthetase association within the multienzyme complex.  相似文献   

9.
In eukaryotes, multienzyme complexes containing five to nine aminoacyl-tRNA synthetase activities have frequently been reported. In this study, we report the existence, in bovine liver cytoplasm, of a multienzyme complex containing at least 16 activities which can be disrupted by homogenization to give rise to smaller complexes and noncomplexed synthetases. Determination of the size and component activity of these complexes and of the molecular weights of all 20 free synthetases suggests that the smaller complexes and free activities normally identified arise from the larger complex by well-defined stages during homogenization. We also show that similar, though not identical, complexes are found in bovine liver mitochondria and give the molecular weights of 16 mitochondrial synthetases.  相似文献   

10.
Eight of the mammalian aminoacyl-tRNA synthetases associate as a multienzyme complex, whereas prokaryotic and low eukaryotic synthetases occur only as free soluble enzymes. Association of the synthetases may result in effective compartmentalization of synthetases and suggests the association of the entire protein biosynthetic machinery. To elucidate the structural elements and the nature of the molecular interactions involved in the association of the synthetases, we have cloned and sequenced the complementary DNA coding human aspartyl-tRNA synthetase. The full length cDNA encodes an open reading frame of 500 amino acids with 56% identity with yeast aspartyl-tRNA synthetase. The similarity with yeast aspartyl-tRNA synthetase is unevenly distributed with a high percent of identity at the C-terminus and relatively low identity at the N-terminus. The N-terminal sequence strongly prefers an alpha-helical secondary structure and shows amphiphilic characteristics. Further comparison with the yeast synthetases showed that the basic positively charged helixes in yeast synthetases are evolved to a neutral amphiphilic helix in this mammalian synthetase. The mammalian neutral amphiphilic helix is so far unique among all known sequences of bacterial, yeast, and mammalian synthetases and may account for the association of synthetases in the synthetase complex.  相似文献   

11.
The human glutaminyl-tRNA synthetase is three times larger than the corresponding bacterial and twice as large as the yeast enzyme. It is possible that the additional sequences of the human glutaminyl-tRNA synthetase are required for the formation of the multienzyme complex which is known to include several of aminoacyl-tRNA synthetases in mammalian cells. To address this point we prepared antibodies against three regions of the human glutaminyl-tRNA synthetase, namely against its enzymatically important core region, and against two sections in its large C-terminal extension. In intact multienzyme complexes the core region was accessible to specific antibody binding. However, the C-terminal sections became available to specific antibody binding only when certain components of the multienzyme complex were either absent or degraded. These findings allow first conclusions as to the relative position of some components in the mammalian aminoacyl-tRNA synthetase complex.  相似文献   

12.
Upon fractionation of a mitochondria-free extract of rabbit reticulocytes into a ribosome-free extract and mono- and polyribosomes the bulk of the aminoacyl-tRNA synthetase activity was found in the fraction of mono- and polyribosomes. All the fifteen aminoacyl-tRNA synthetases were revealed, although in somewhat different quantities, in both fractions of the mitochondria-free reticulocyte extract. Aminoacyl-tRNA synthetases of the ribosome-free extract are found in two forms: RNA-binding one, and, the one having no affinity for high molecular weight RNAs. Aminoacyl-tRNA synthetases dissociated from the complexes with polyribosomes exist only in the RNA-binding form. All aminoacyl-tRNA synthetases can be removed from such complexes by an addition of 16S rRNA of E. coli, poly(U) or tRNA of rabbit reticulocytes. This testifies to labile association of aminoacyl-tRNA synthetases with the RNA-component of polyribosomes as well as to a rather nonspecific character of their interaction. After EDTA-induced dissociation of polyribosomes, the aminoacyl-tRNA synthetase activity was detected in the complex with both ribosomal subunits.  相似文献   

13.
The size distribution of lysyl- and arginyl-tRNA synthetases in crude extracts from rat liver was re-examined by gel filtration. It is shown that irrespective of the addition or not of several proteinase inhibitors, lysyl-tRNA synthetase was present exclusively as a high-Mr entity, while arginyl-tRNA synthetase occurred as high- and low-Mr forms, in the constant proportions of 2:1, respectively. The polypeptide molecular weights of the arginyl-tRNA synthetase in these two forms were 74000 and 60000, respectively. The high-Mr forms of lysyl- and arginyl-tRNA synthetases were co-purified to yield a multienzyme complex, the polypeptide composition of which was virtually identical to that of the complexes from rabbit liver and from cultured Chinese hamster ovary cells. Of the nine aminoacyl-tRNA synthetases, specific for lysine, arginine, methionine, leucine, isoleucine, glutamine, glutamic and aspartic acids and proline, which characterize the purified complex, each, except prolyl-tRNA synthetase, was assigned to the constituent polypeptides by the protein-blotting procedure, using the previously characterized antibodies to the aminoacyl-tRNA synthetase components of the corresponding complex from sheep liver.  相似文献   

14.
Five aminoacyl-tRNA synthetases found in the high molecular weight core complex were phosphorylated in rabbit reticulocytes following labeling with 32P. The synthetases were isolated by affinity chromatography on tRNA-Sepharose followed by immunoprecipitation. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, and aspartyl-tRNA synthetases and, to a lesser extent, the methionyl-tRNA synthetase. In addition, a 37,000-dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with 32P in the presence of 8-bromo-cAMP and 3-isobutyl-1-methylxanthine resulted in a 6-fold increase in phosphorylation of the glutaminyl-tRNA synthetase and a 2-fold increase in phosphorylation of the aspartyl-tRNA synthetase. When the high molecular weight core complex was isolated by gel filtration/affinity chromatography, the profile of phosphorylation was similar to that observed by immunoprecipitation with a 9- and 3-fold stimulation of the glutaminyl- and aspartyl tRNA-synthetase, respectively. From this data it was concluded that the increased phosphorylation of the glutaminyl- and aspartyl-tRNA synthetases obtained with 8-bromo-cAMP did not appear to be involved in dissociation of the high molecular weight core complex.  相似文献   

15.
Affinity chromatography of rat liver aminoacyl-tRNA synthetase complex   总被引:3,自引:0,他引:3  
The affinity column lysyldiaminohexyl-Sepharose 4B has been synthesized for the purification of aminoacyl-tRNA synthetase complexes. Lysyl-tRNA synthetase (EC 6.1.1.6) bound specifically to the Sepharose-bound lysine. The purified lysyl-tRNA synthetase was associated with arginyl-tRNA synthetase (EC 6.1.1.16) and sedimented at 18S and 12S. A 24S lysyl-tRNA synthetase bound specifically to the affinity column and also found associated with arginyl-tRNA synthetase. The results favor the model of a heterotypic multienzyme complex of mammalian aminoacyl-tRNA synthetases.  相似文献   

16.
Cultured Chinese hamster ovary cells were subjected to amino acid restriction to examine its effects on the level of expression of the nine aminoacyl-tRNA synthetase components of the multienzyme complex which was previously characterized (Mirande, M., Le Corre, D., and Waller, J.-P. (1985) Eur. J. Biochem. 147, 281-289). Lowering the methionine concentration in the medium from 100 to 1 microM led to growth arrest, rapid deacylation of tRNAMet, and progressive 2-fold elevation of the methionyl-tRNA synthetase level, as assessed by specific activity measurements and immunotitration. The levels of the other eight aminoacyl-tRNA synthetases were not affected. Total methionine deprivation led to the additional derepression of the leucyl- and isoleucyl-tRNA synthetase components, whereas the corresponding tRNAs remained fully acylated. These pleiotropic responses to total methionine restriction were abolished in the presence of 2 mM methioninol, suggesting that amino acid transport systems may play a role in the regulation of aminoacyl-tRNA synthetase expression. The effect of total deprivation of arginine, glutamine, isoleucine, leucine, lysine, or proline from the culture medium on the level of expression of the corresponding aminoacyl-tRNA synthetases was also examined. In all cases, no elevation of the level of the corresponding synthetase was observed. The behavior of methionyl-tRNA synthetase from Chinese hamster ovary cells displaying a 2-fold increased level of the enzyme due to methionine restriction was examined in detail. Failure to detect a free form of the enzyme by gel filtration, as well as the finding that the isolated complex displayed twice the amount of methionyl-tRNA synthetase relative to the other components, indicates that this multienzyme structure can accommodate at least one additional copy of one of its components.  相似文献   

17.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

18.
Recent studies suggest that aminoacylation of tRNA may play an important role in the transport of these molecules from the nucleus to the cytoplasm. However, there is almost no information regarding the status of active aminoacyl-tRNA synthetases within the nuclei of eukaryotic cells. Here we show that at least 13 active aminoacyl-tRNA synthetases are present in purified nuclei of both Chinese hamster ovary and rabbit kidney cells, although their steady-state levels represent only a small percentage of those found in the cytoplasm. Most interestingly, all the nuclear aminoacyl-tRNA synthetases examined can be isolated as part of a multienzyme complex that is more stable, and consequently larger, than the comparable complex isolated from the cytoplasm. These data directly demonstrate the presence of active aminoacyl-tRNA synthetases in mammalian cell nuclei. Moreover, their unexpected structural organization raises important questions about the functional significance of these multienzyme complexes and whether they might play a more direct role in nuclear to cytoplasmic transport of tRNAs.  相似文献   

19.
Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.  相似文献   

20.
Lysyl-tRNA synthetase, dissociated from the multienzyme complexes of aminoacyl-tRNA synthetases from rat liver, was previously found to be 6-fold more active than the synthetase complex in the enzymatic synthesis of P1,P4-bis(5'-adenosyl)tetraphosphate. The bi-substrate and product inhibition kinetics of the reaction are analyzed. Free lysyl-tRNA synthetase exhibits distinctly different kinetic patterns from those of an 18 S synthetase complex containing lysyl-tRNA synthetase. The 18 S synthetase complex shows kinetic patterns which are consistent with an ordered Bi Uni Uni Bi ping-pong mechanism. Free lysyl-tRNA synthetase shows kinetic patterns consistent with a random mechanism. The differences in the enzymatic properties are attributed to the organization of the supramolecular structure of the synthetase complex. The results suggest that association of the synthetases may affect the mechanisms of the synthesis of AppppA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号