首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor or stem cells. The aim of this study was to use increased telomerase promoter activity in small-cell lung cancer (SCLC) gene therapy. The hTERT promoter and Myc-Max response elements (MMRE) in pGL3-Control vector containing SV40 enhancer resulted in strong expression of the luciferase gene only in telomerase positive and myc overexpressing SCLC cell line but not in normal human cell line. To investigate the possibility of the utilization of the MMRE, hTERT promoter, and SV40 enhancer in targeted SCLC gene therapy, adenovirus vector expressing HSV-TK controlled by the MMRE, hTERT promoter, and SV40 enhancer for the induction of telomerase positive and myc-overexpressing cancer specific cell death was constructed. SCLC cells infected with Ad-MMRE-hT-TK-enh were significantly suppressed and induced apoptosis more than those of Ad-hT-TK or Ad-hT-TK-enh infected cells. Telomerase and c-myc are activated in 60 approximately 80% of SCLC, so the increased activity of telomerase promoter can be used for targeted SCLC gene therapy. These results show that the MMRE, hTERT promoter, and SV40 enhancer can be used in SCLC targeted cancer gene therapy.  相似文献   

7.
8.
The phylogenetically-derived secondary structures of telomerase RNAs (TR) from ciliates, yeasts and vertebrates are surprisingly conserved and contain a pseudoknot domain at a similar location downstream of the template. As the pseudoknot domains of Tetrahymena TR (tTR) and human TR (hTR) mediate certain similar functions, we hypothesized that they might be functionally interchangeable. We constructed a chimeric TR (htTR) by exchanging the hTR pseudoknot sequences for the tTR pseudoknot region. The chimeric RNA reconstituted human telomerase activity when coexpressed with hTERT in vitro, but exhibited defects in repeat addition processivity and levels of DNA synthesis compared to hTR. Activity was dependent on tTR sequences within the chimeric RNA. htTR interacted with hTERT in vitro and dimerized predominantly via a region of its hTR backbone, the J7b/8a loop. Introduction of htTR in telomerase-negative cells stably expressing hTERT did not reconstitute an active enzyme able to elongate telomeres. Thus, our results indicate that the chimeric RNA reconstituted a weakly active nonprocessive human telomerase enzyme in vitro that was defective in telomere elongation in vivo. This suggests that there may be species-specific requirements for pseudoknot functions.  相似文献   

9.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. The aim of this study is to test the increased telomerase promoter activity for cancer gene therapy in adenovirus vector. We cloned the hTERT promoter in place of the SV40 promoter in the pGL3-contol vector to be increased by the SV40 enhancer sequences, resulting in strong expression of luc+ only in telomerase positive cancer cells. Then we transfected the constructed plasmid into a normal human cell line and several cancer cell lines. Through these experiments, we identified the selective and increased expression of the luciferase gene controlled by the hTERT promoter and the SV40 enhancer in the telomerase positive cancer cell lines. To investigate the possibility of utilizing the hTERT promoter and the SV40 enhancer in targeted cancer gene therapy, we constructed an adenovirus vector expressing HSV-TK controlled by the hTERT promoter and the SV40 enhancer for the induction of specific telomerase positive cancer cell death. NSCLC cells infected by Ad-hT-TK-enh were more significantly suppressed and induced apoptosis than those infected by Ad-hT-TK. Telomerase is activated in 80 approximately 90% of cancers, so adenovirus with increasing telomerase promoter activity might be used for targeted cancer gene therapy using suicide genes. These results show that the hTERT promoter and the SV40 enhancer might be used for targeted cancer gene therapy.  相似文献   

10.
11.
12.
We have mapped the 5' and 3' boundaries of the region of the human telomerase RNA (hTR) that is required to produce activity with the human protein catalytic subunit (hTERT) by using in vitro assembly systems derived from rabbit reticulocyte lysates and human cell extracts. The region spanning nucleotides +33 to +325 of the 451-base hTR is the minimal sequence required to produce levels of telomerase activity that are comparable with that made with full-length hTR. Our results suggest that the sequence approximately 270 bases downstream of the template is required for efficient assembly of active telomerase in vitro; this sequence encompasses a substantially larger portion of the 3' end of hTR than previously thought necessary. In addition, we identified two fragments of hTR (nucleotides +33 to +147 and +164 to +325) that cannot produce telomerase activity when combined separately with hTERT but can function together to assemble active telomerase. These results suggest that the minimal sequence of hTR can be divided into two sections, both of which are required for de novo assembly of active telomerase in vitro.  相似文献   

13.
14.
15.
The rapid rate at which cancer cells divide necessitates a mechanism for telomere maintenance, and in approximately 90% of all cancer types the enzyme telomerase is used to maintain the length of telomeric DNA. Telomerase is a multi-subunit enzyme that minimally contains a catalytic protein subunit, hTERT, and an RNA subunit, hTR. Proper assembly of telomerase is critical for its enzymatic activity and therefore is a requirement for the proliferation of most cancer cells. We have developed the first high-throughput screen capable of identifying small molecules that specifically perturb human telomerase assemblage. The screen uses a scintillation proximity assay to identify compounds that prevent a specific and required interaction between hTR and hTERT. Rather than attempting to disrupt all of the individual hTR-hTERT interactions, we focused the screen on the interaction of the CR4-CR5 domain of hTR with hTERT. The screen employs a biotin-labeled derivative of the CR4-CR5 domain of hTR that independently binds [(35)S]hTERT in a functionally relevant manner. The complex between hTERT and biotin-labeled RNA can be captured on streptavidin-coated scintillation proximity beads. Use of 96-well filter plates and a vacuum manifold enables rapid purification of the beads. After optimization, statistical evaluation of the screen generated a Z' factor of 0.6, demonstrating the high precision of the assay.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号