首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The elastic modulus of the Baker’s yeast (Saccharomyces cerevisiae) cell wall reported in studies using atomic force microscopy (AFM) is two orders of magnitude lower than that obtained using whole cell compression by micromanipulation. Using finite element modelling, it is shown that Hertz-Sneddon analysis cannot be applied to AFM indentation data for single layer core–shell structures. In addition, the Reissner solution for shallow homogeneous spheres is not appropriate for thick walls such as those of yeast cells. In order to explain yeast compression measurements at different length scales, a double layer wall model is presented considering a soft external layer composed of mannoproteins, and a stiff inner layer of β-glucan fibres and chitin. Under this model, previous AFM studies using sharp indenters provide reasonable estimates of the external layer elastic modulus, while micromanipulation provides the total stiffness of the cell wall. Data from both measurements are combined to estimate the mechanical properties of the inner stiff layer.  相似文献   

2.
Indentation using the atomic force microscope (AFM) has potential to measure detailed micromechanical properties of soft biological samples. However, interpretation of the results is complicated by the tapered shape of the AFM probe tip, and its small size relative to the depth of indentation. Finite element models (FEMs) were used to examine effects of indentation depth, tip geometry, and material nonlinearity and heterogeneity on the finite indentation response. Widely applied infinitesimal strain models agreed with FEM results for linear elastic materials, but yielded substantial errors in the estimated properties for nonlinear elastic materials. By accounting for the indenter geometry to compute an apparent elastic modulus as a function of indentation depth, nonlinearity and heterogeneity of material properties may be identified. Furthermore, combined finite indentation and biaxial stretch may reveal the specific functional form of the constitutive law--a requirement for quantitative estimates of material constants to be extracted from AFM indentation data.  相似文献   

3.
The elastic behaviors of stratum corneum, viable epidermis, dermis, and whole skin were investigated by nano/microindentation techniques. Insignificant differences in reduced elastic modulus of skin samples obtained from three different porcine breeds revealed breed type independent measurements. The reduced elastic modulus of stratum corneum is shown to be about three orders of magnitude higher than that of dermis. As a result, for relatively shallow and deep indentations, skin elasticity is controlled by that of stratum corneum and dermis, respectively. Skin deformation is interpreted in the context of a layered structure model consisting of a stiff and hard surface layer on a compliant and soft substrate, supported by microscopy observations and indentation measurements.  相似文献   

4.
Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young’s modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions (“brush” models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed.  相似文献   

5.
Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young’s modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions (“brush” models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed.  相似文献   

6.
Sun Y  Guo S  Walker GC  Kavanagh CJ  Swain GW 《Biofouling》2004,20(6):279-289
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E<0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.  相似文献   

7.
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E< 0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.  相似文献   

8.
Traditionally, the complex mechanical behavior of planar soft biological tissues is characterized by (multi)axial tensile testing. While uniaxial tests do not provide sufficient information for a full characterization of the material anisotropy, biaxial tensile tests are difficult to perform and tethering effects limit the analyses to a small central portion of the test sample. In both cases, determination of local mechanical properties is not trivial. Local mechanical characterization may be performed by indentation testing. Conventional indentation tests, however, often assume linear elastic and isotropic material properties, and therefore these tests are of limited use in characterizing the nonlinear, anisotropic material behavior typical for planar soft biological tissues. In this study, a spherical indentation experiment assuming large deformations is proposed. A finite element model of the aortic valve leaflet demonstrates that combining force and deformation gradient data, one single indentation test provides sufficient information to characterize the local material behavior. Parameter estimation is used to fit the computational model to simulated experimental data. The aortic valve leaflet is chosen as a typical example. However, the proposed method is expected to apply for the mechanical characterization of planar soft biological materials in general.  相似文献   

9.
The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young's modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young's modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young's modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.  相似文献   

10.
Currently, little is known about the mechanical properties of filamentous fungal hyphae. To study this topic, atomic force microscopy (AFM) was used to measure cell wall mechanical properties of the model fungus Aspergillus nidulans. Wild type and a mutant strain (deltacsmA), lacking one of the chitin synthase genes, were grown in shake flasks. Hyphae were immobilized on polylysine-coated coverslips and AFM force--displacement curves were collected. When grown in complete medium, wild-type hyphae had a cell wall spring constant of 0.29 +/- 0.02 N/m. When wild-type and mutant hyphae were grown in the same medium with added KCl (0.6 M), hyphae were significantly less rigid with spring constants of 0.17 +/- 0.01 and 0.18 +/- 0.02 N/m, respectively. Electron microscopy was used to measure the cell wall thickness and hyphal radius. By use of finite element analysis (FEMLAB v 3.0, Burlington, MA) to simulate AFM indentation, the elastic modulus of wild-type hyphae grown in complete medium was determined to be 110 +/- 10 MPa. This decreased to 64 +/- 4 MPa for hyphae grown in 0.6 M KCl, implying growth medium osmotic conditions have significant effects on cell wall elasticity. Mutant hyphae grown in KCl-supplemented medium were found to have an elastic modulus of 67 +/- 6 MPa. These values are comparable with other microbial systems (e.g., yeast and bacteria). It was also found that under these growth conditions axial variation in elastic modulus along fungal hyphae was small. To determine the relationship between composition and mechanical properties, cell wall composition was measured by anion-exchange liquid chromatography and pulsed electrochemical detection. Results show similar composition between wild-type and mutant strains. Together, these data imply differences in mechanical properties may be dependent on varying molecular structure of hyphal cell walls as opposed to wall composition.  相似文献   

11.
The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 and 5 μm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38-0.95 kPa, lower than the values measured using flat-ended cylinders >100 μm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345-2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 vs. 5 μm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure.  相似文献   

12.
Costal cartilage (CC) is one of the load-bearing tissues of the rib cage. Literature on material characterisation of the CC is limited. Atomic force microscopy (AFM) has been extremely successful in characterising the elastic properties of soft biomaterials such as articular cartilage and hydrogels, which are often the material of choice for cartilage models. But AFM data on CC are absent in the literature. In this study, AFM indentations using spherical beaded tips were performed on human CC to isolate the mechanical properties. A novel method was developed for modelling the relaxation indentation experiments based on Fung's quasi-linear viscoelasticity and a continuous relaxation spectrum. This particular model has been popular for uniaxial compression test data analysis. Using the model, the mean Young's modulus of CC was found to be about 2.17, 4.11 and 5.49?MPa for three specimens. A large variation of modulus was observed over the tissue. Also, the modulus values decreased with distance from the costochondral junction.  相似文献   

13.
Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy’s law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young’s modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.  相似文献   

14.
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.  相似文献   

15.
Costal cartilage (CC) is one of the load-bearing tissues of the rib cage. Literature on material characterisation of the CC is limited. Atomic force microscopy (AFM) has been extremely successful in characterising the elastic properties of soft biomaterials such as articular cartilage and hydrogels, which are often the material of choice for cartilage models. But AFM data on CC are absent in the literature. In this study, AFM indentations using spherical beaded tips were performed on human CC to isolate the mechanical properties. A novel method was developed for modelling the relaxation indentation experiments based on Fung's quasi-linear viscoelasticity and a continuous relaxation spectrum. This particular model has been popular for uniaxial compression test data analysis. Using the model, the mean Young's modulus of CC was found to be about 2.17, 4.11 and 5.49 MPa for three specimens. A large variation of modulus was observed over the tissue. Also, the modulus values decreased with distance from the costochondral junction.  相似文献   

16.
Measurement of the mechanical properties of bone is important for estimating the stresses and strains exerted at the cellular level due to loading experienced on a macro-scale. Nano- and micro-mechanical properties of bone are also of interest to the pharmaceutical industry when drug therapies have intentional or non-intentional effects on bone mineral content and strength. The interactions that can occur between nano- and micro-indentation creep test condition parameters were considered in this study, and average hardness and elastic modulus were obtained as a function of indentation testing conditions (maximum load, load/unload rate, load-holding time, and indenter shape). The results suggest that bone reveals different mechanical properties when loading increases from the nano- to the micro-scale range (microN to N), which were measured using low- and high-load indentation testing systems. A four-parameter visco-elastic/plastic constitutive model was then applied to simulate the indentation load vs. depth response over both load ranges. Good agreement between the experimental data and finite element model was obtained when simulating the visco-elastic/plastic response of bone. The results highlight the complexity of bone as a biological tissue and the need to understand the impact of testing conditions on the measured results.  相似文献   

17.
A N Parbhu  W G Bryson  R Lal 《Biochemistry》1999,38(36):11755-11761
Nanomechanical properties of biological fibers are governed by the morphological features and chemically heterogeneous constituent subunits. However, very little experimental data exist for nanoscale correlation between heterogeneous subunits and their mechanical properties. We have used keratin-rich wool fibers as a model of composite biological fibers; a wool fiber is a simple two component cylindrical system consisting of a core cellular component surrounded by an outer cell layer and their ultrastructure and chemical composition are well-characterized. The core is 16-40 micrometer in diameter and rich in axially aligned keratin microfibrils. Outer cells have multiple laminar layers, 60-600 nm thick and distinctly rich in disulfide bonds. We used an atomic force microscope (AFM) to examine the nanomechanical properties of various structural components using complementary techniques of force-volume imaging and nano-indentation. AFM images of transverse sections of fibers were obtained in ambient environment, and the mechanical properties of several identified regions were examined. The outer cell layer showed a significantly higher mechanical stiffness than the internal cellular core region. Chemical reduction of disulfide bonds eliminated such dichotomy of mechanical strengths, indicating that the higher rigidity of the outer layer is attributed primarily to the presence of extensive disulfide bonding in the exo-cuticle. This is the first detailed correlative study of nano-indentation and regional elasticity measurements in composite biological systems, including mammalian biological fibers.  相似文献   

18.
This paper reports on the initial stages of a project to simulate the nonlinear mechanical behavior of an aging human face. A cross-section of the facial structure is considered to consist of a multilayered composite of tissues with differing mechanical behavior. The constitutive properties of these tissues are incorporated into a finite element model of the three-dimensional facial geometry. Relatively short time (elastic-viscoplastic) behavior is governed by equations previously developed which are consistent with mechanical tests. The long time response is controlled by the aging elastic components of the tissues. An aging function is introduced which, in a simplified manner, captures the observed loss of stiffness of these aging elastic components due to the history of straining as well as other physiological and environmental influences. Calculations have been performed for 30 years of exposure to gravitational forces. Progressive gravimetric soft tissue descent is simulated, which is regarded as the main indication of facial aging. Results are presented for the deformations and stress distributions in the layers of the soft tissues.  相似文献   

19.
Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable to a variety of hydrated biological materials whether soft or hard.  相似文献   

20.
Many soft biological tissues possess a considerable surface stress, which plays a significant role in their biophysical functions, but most previous methods for characterizing their mechanical properties have neglected the effects of surface stress. In this work, we investigate the micropipette aspiration method to measure the mechanical properties of soft tissues and cells with surface effects. The neo-Hookean constitutive model is adopted to describe the hyperelasticity of the measured biological material, and the surface effect is taken into account by the finite element method. It is found that when the pipette radius or aspiration length is comparable to the elastocapillary length, surface energy may distinctly alter the aspiration response. Generally, both the aspiration length and the bulk normal stress decrease with increasing surface energy, and thus neglecting the surface energy would lead to an overestimation of elastic modulus. Through dimensional analysis and numerical simulations, we provide an explicit relation between the imposed pressure and the aspiration length. This method can be applied to determine the mechanical properties of soft biological tissues and organs, e.g., livers, tumors and embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号