首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Macrophytes play a keystone role in shallow aquatic ecosystems. In lakes, macrophytes stabilize clear‐water conditions with high biodiversity and their decline can cause a shift to a turbid state with lower biodiversity. Various mechanisms have been suggested as triggers of macrophyte collapse. Herbivory by waterfowl and fish seems to be one of the obvious factors, but the response of macrophytes to herbivory is ambiguous. We hypothesized that herbivory alone does not typically cause macrophyte collapse, but that shading from periphyton can enhance the effect of herbivores. Shading of macrophytes is supposed to increase with eutrophication due to changes in the top–down control cascading from fish via macroinvertebrates to periphyton. We elaborated on this idea by fitting a macrophyte growth model with different herbivore grazing and periphyton shading scenarios. In addition, we performed a meta‐analysis on existing experimental herbivore exclosure studies with respect to periphyton growth. The model supported our proposed hypothesis and the reviewed field studies appeared to point in the same direction. We suggest that a significant herbivore impact may indicate a reduced resilience of vegetation to eutrophication, making it an early warning signal for an imminent macrophyte collapse leading to a sudden shift of the system to turbid conditions.  相似文献   

2.
Invasive species are one of the widespread stressors of aquatic ecosystems. Several studies document food web effects of invasive fish, but little information is available on the effects of invasive macrophytes. We studied differences in food chain length as well as trophic position and trophic diversity of fish and odonates in lakes dominated by native plants or invasive Eurasian watermilfoil. Trophic position and food chain length were determined using baseline-adjusted δ15N isotope signatures. Trophic diversity, or isotope niche width, was estimated from convex hull area analysis. Results show that trophic position of secondary consumers was not affected by the invasive macrophyte, whereas trophic diversity was greater in watermilfoil-dominated lakes. The direction of isotopic niche expansion was different in fish and odonates, suggesting potential decoupling in predator–prey interactions. This study shows that dominant non-native macrophytes may cause significant changes in food web structure of invaded ecosystems. Trophic diversity may be a more sensitive indicator of environmental stress than trophic position and has the potential to be used for assessment of invasive species impacts and restoration success.  相似文献   

3.
It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones in North America, South America, and Europe. We tested if systematic differences exist in the relationship between the abundance of submerged macrophytes and environmental factors such as lake depth and nutrient levels. In the pooled dataset the proportion of lakes with substantial submerged macrophyte coverage (> 30% of the lake area) decreased in a sigmoidal way with increasing total phosphorus (TP) concentration, falling most steeply between 0.05 and 0.2 mg L−1. Substantial submerged macrophyte coverage was also rare in lakes with total nitrogen (TN) concentrations above 1–2 mg L−1, except for lakes with very low TP concentrations where macrophytes remain abundant until higher TN concentrations. The deviance reduction of logistic regression models predicting macrophyte coverage from nutrients and water depth was generally low, and notably lowest in tropical and subtropical regions (Brazil, Uruguay, and Florida), suggesting that macrophyte coverage was strongly influenced by other factors. The maximum TP concentration allowing substantial submerged macrophyte coverage was clearly higher in cold regions with more frost days. This is in agreement with other studies which found a large influence of ice cover duration on shallow lakes' ecology through partial fish kills that may improve light conditions for submerged macrophytes by cascading effects on periphyton and phytoplankton. Our findings suggest that, in regions where climatic warming is projected to lead to fewer frost days, macrophyte cover will decrease unless the nutrient levels are lowered.  相似文献   

4.
1. Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on their dietary flexibility. 2. We tested the effects of a flexible omnivore and an herbivore on aquatic vegetation by comparing the effects of rudd (Scardinius erythrophthalmus, the most herbivorous fish in temperate climates) with grass carp (Ctenopharyngodon idella) in a mesocosm pond study. Exclosures distinguished herbivorous effects of fish on submerged macrophytes from indirect effects through changes in water quality, whereas stable isotope food‐web analysis provided information on fish diets. 3. We hypothesised that rudd, with its flexible diet and preference for animal food items, would only indirectly affect macrophytes, whereas grass carp, with its inflexible herbivorous diet, would directly affect macrophyte biomass. 4. Only grass carp significantly reduced macrophyte biomass through consumption. Rudd had no effect. Food‐web analysis indicated that rudd predominantly consumed animal prey, whereas grass carp included more plants in their diet, although they also consumed animal prey. Grass carp significantly affected water quality, resulting in lowered pH and increased N‐NH4 concentrations, whereas more periphyton growth was observed in the presence of rudd. However, the indirect non‐herbivorous effects of both fish species had no effect on macrophyte biomass. 5. Both fish species should be considered as omnivores. Despite the fact that rudd is the most herbivorous fish in the western European climate zone, its effect on submerged macrophyte biomass is not substantial at natural densities and current temperatures.  相似文献   

5.
Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within continents due to climate warming. In this study we examine the herbivore load (herbivore biomass per plant biomass), predator load (predator biomass per plant biomass) and predator pressure (predator biomass per herbivore biomass) on an inter-continental non-native and an intra-continental range-expanding plant species and two congeneric native species. All four plant species co-occur in riparian habitat in north-western Europe. Insects were collected in early, mid and late summer from three populations of all four species. Before counting and weighing the insects were classified to trophic guild as carnivores (predators), herbivores, and transients. Herbivores were further subdivided into leaf-miners, sap-feeders, chewers and gallers. Total herbivore loads were smaller on inter-continental non-native and intra-continental range-expanding plants than on the congeneric natives. However, the differences depended on time within growing season, as well as on the feeding guild of the herbivore. Although the predator load on non-native plants was not larger than on natives, both non-native plant species had greater predator pressure on the herbivores than the natives. We conclude that both these non-native plant species have better bottom-up as well as top-down control of herbivores, but that effects depend on time within growing season and (for the herbivore load) on herbivore feeding guild. Therefore, when evaluating insects on non-native plants, variation within season and differences among feeding guilds need to be taken into account.  相似文献   

6.
Summary Structural features of marine macrophytes are generally believed to act as defences against herbivores by reducing the ability of herbivores to consume the plants. Thallus form and calcification in particular have been considered structural defences that act by reducing the probability of consumption of tissue by herbivores. Studies directly measuring the mechanical resistance of a variety of marine algae (tropical and temperate) to herbivores of two important feeding types, rasping herbivores (docoglossan limpets) and a biting herbivore (an herbivorous crab), do not support this hypothesis. I suggest that thallus form and calcification may play a more important role in minimizing the impact of herbivores by reducing the probability of subsequent tissue loss due to herbivore-induced damage. For some algal species, tissue lost subsequent to herbivore damage may greatly exceed loss due to direct consumption by herbivores. I suggest that calcification and thallus properties resulting in preferential tear directions reduce the probability of tissue loss subsequent to herbivore damage rather than prevent herbivores from removing tissue as has been suggested in the past.  相似文献   

7.
Some potentially invasive herbivores/pathogens in their home range may attack plants originating from another geographic area. Methods are required to assess the risk these herbivores/pathogens pose to these plants in their indigenous ecosystems. The processes and criteria used by weed biological control researchers to assess the impact of potential biological control agents on a plant species in its non-native range provide a possible framework for assessing risks to indigenous plants. While there are similarities between these criteria such as the need for clear objectives, studies in the native range of the herbivore/pathogen, good knowledge of the ecology of the target plant and taxonomy of the plant and herbivore/pathogen, and modelling of the interaction between the two organisms, there are some important differences in approach. These include the need to consider the threat classification of the plant, the likely greater risk from polyphagous herbivores/pathogens than oligophagous or monophagous species, and the need to consider the impact of an additional natural enemy in conjunction with a suite of existing natural enemies. The costs of conducting a risk assessment of a herbivore/pathogen in another country that damages plants indigenous to another geographic area means that criteria will be needed for deciding which foreign herbivore/pathogen species should be assessed. These criteria could include the threat classification of the plant, the amount of damage to the particular plant organs affected, and the importance in key ecosystems.  相似文献   

8.
Limited data from terrestrial ecosystems suggest that invasive species can affect energy flow and nutrient cycling in invaded systems. This is likely also true for aquatic ecosystems, yet little information is available on food web effects of invasive macrophytes. This study examined the effects of dominant invasive Eurasian watermilfoil on lake trophic structure and energy flow. Stable isotopes of carbon and nitrogen were used to compare trophic structure in invaded and uninvaded lakes and macrophyte stands. Contribution of native and invasive macrophytes, their epiphyton and detritus to the upper trophic level of lacustrine food webs was partitioned using mixing models. Carbon isotope values of macroinvertebrate consumers were similar to macrophyte-associated production in stands from which they were collected. However, contribution of Eurasian watermilfoil and its epiphyton to higher trophic level was negligible, and littoral fish derived most of their energy from sources associated with native macrophytes, despite their lower abundance. This means that littoral fish may depend on the remaining patches of native macrophytes in lakes invaded by non-native plants. Considering previous findings, these results show that the assessment of ecosystem-level processes is needed to understand the entire range of impacts of invasive species.  相似文献   

9.
  1. Biological invasions can greatly alter ecological communities, affecting not only the diversity and abundance but also composition of invaded assemblages. This is because invaders’ impacts are mediated by characteristics of resident species: some may be highly sensitive to invader impacts while others are unaffected or even facilitated. In some cases, this can result in invasive species promoting further invasions; in particular, herbivory by introduced animals has been shown to disproportionately harm native plants, which can indirectly benefit non-native plants. Here, we investigated whether such patterns emerged through the effects of an invasive fish species on lake plant communities.
  2. Specifically, we tested whether invasion of Minnesota (U.S.A.) lakes by Cyprinus carpio (common carp), an omnivorous, benthivorous fish known to reduce abundance and richness of aquatic plants, differentially affected native versus non-native plant species. We applied statistical models to a large, long-term monitoring dataset (206 macrophyte taxa recorded in 913 lakes over a 20-year time period) to test whether carp altered community composition, to identify which macrophyte species were most sensitive to carp and determine whether species characteristics predicted carp sensitivity, and to characterise consequences of carp invasion on lake-level vegetation attributes.
  3. We found that carp exerted strong selective pressure on community composition. Native macrophytes, those with a more aquatic growth form, and those considered less tolerant of disturbance (i.e. higher coefficients of conservatism) were more sensitive to carp. Conversely, no introduced macrophytes exhibited sensitivity to carp and all had higher probabilities of occurrence as carp abundance increased. The net effect of carp invasion was a shift toward less species-rich plant communities characterised by more non-native and disturbance-tolerant species.
  4. These results have several implications for conservation and management. First, they reinforce the need to prevent further spread of carp outside of their native range. Where carp have already established, their control should be incorporated into efforts to restore aquatic vegetation; this may be an essential step for recovering particular plant species of high conservation importance. Furthermore, reducing carp abundance could have ancillary benefits of reducing dominance by invasive plant species. Lastly, where carp cannot be eliminated, managers should target native macrophytes that are relatively tolerant of carp in shoreline plantings and other revegetation efforts.
  相似文献   

10.
Macrophytes and factors affecting their distribution were studied in 19 coastal lakes of Estonia. The aim of the study was to determine the factors influencing the distribution of macrophytes in coastal lakes and to assess the suitability of valid macrophyte metrics. Our hypothesis was that in coastal lakes most of the macrophyte distribution patterns are caused by lake-specific variables. Morphological, physico-chemical and catchment area characteristics of the lakes varied greatly. Lakes were in different development stages—lakes nearest to the Baltic Sea were younger and more influenced by brackish water and the furthest lakes were older with more freshwater. All that variability was reflected in macrophyte parameters. Factor analysis of environmental indices divided them into three groups—catchment area, morphometric and water chemistry factors. The first factor may be considered as a pressure and the other two as lake-type-specific factors. Lake catchment area parameters had an influence on Bolboschoenus maritimus, Chara tomentosa and Typha latifolia abundance. Morphometric parameters had an influence on the depth distribution of macrophytes and water chemistry factors on the abundance of helophytes. Current indicator species showed more variability associated with lake-specific factors than with changes in status or the influence of pressures.  相似文献   

11.
西太湖水生植物时空变化   总被引:37,自引:3,他引:37  
水生植物在浅水湖泊生态系统中具有十分重要的作用。根据中国科学院太湖湖泊生态系统研究站1989年以来的常规监测资料,将西太湖(除东太湖以外的湖区)划分为9个区,采用点截法(point intercept method),于2002~2005年对各区水生植物的种类、生物量和空间分布情况进行了6次调查。结果表明:西太湖现有水生植物16种,分属于11科12属;水生植物总面积约10220hm^2,其中沉水植物分布面积约占64.58%;挺水植物约占0.29%;漂浮植物约占38.16%。各个种之间生物量差异显著,马来眼子菜、荇菜、芦苇的生物量在所有水生植物中居前3位。多样性分析表明,水生植物种类4a来未发生明显变化,但种类和生物量季节性差异较大。水生植物呈环状分布在距湖岸5km以内的水域和部分岛屿周围,东岸和南岸为水生植物的主要集中分布区域,分布区连续性好,且水草种类齐全。挺水植物种类单一,仅有芦苇(Phragmites communis)一种,分布区域多限于水深小于1.6m的湖岸;沉水植物共有8种,为水生植物的主要组成部分,马来眼子菜(Potamogeton malaianus)的分布频度最高,在西山岛周围水域逐年扩张,成为该区域的先锋种;漂浮植物3种,主要以荇菜(Nymphoides peltata)为主,在七都水域有逐渐扩张的趋势。马来眼子菜、芦苇、荇菜表现出对水环境较强的适应能力,目前为西太湖的3个优势种。20世纪50年代以来,西太湖水生植物种类减少了50种,其中水质下降是导致水生植物种类不断减少甚至消失的一个重要原因。围网养殖和不合理的捕捞方式也对局部水域的植物造成极大的破坏。水生植物生存环境日益严峻,种群单一化趋势日益明显。  相似文献   

12.
In regions with thousands of lakes, large scale regional macrophyte surveys are rarely done due to logistical difficulties and high costs. We examined whether remote sensing can be used for regional monitoring of macrophytes in inland lakes using a field study of 13 lakes in Michigan, USA (nine model development lakes and four model testing lakes). Our objectives were: (1) to determine if different levels of macrophyte cover, different growth forms or specific species could be detected using the Landsat-5 TM sensor, and (2) to determine if we could improve predictions of macrophyte abundance and distribution in lakes by including sediment type or measures of water clarity (Secchi disk transparency, chlorophyll a, phytoplankton biovolume, or water color) in our models. Using binomial and multinomial logistic regression models, we found statistically significant relationships between most macrophyte measures and Landsat-5 TM values in the nine model development lakes (percent concordant values: 58–97%). Additionally, we found significant correlations between three lake characteristics and the TM values within lake pelagic zones, despite the inability of these variables to improve model predictions. However, model validation using four lakes was generally low, suggesting caution in applying these models to other lakes. Although the initial model development results suggest that remote sensing is a potentially promising tool for regionally assessing macrophytes, more research is necessary to refine the models in order for them to be applied to unsampled lakes.  相似文献   

13.
Most multicellular species alive are tropical arthropods associated with plants. Hence, the host-specificity of these species, and their diversity at different scales, are keys to understanding the assembly structure of global biodiversity. We present a comprehensive scheme in which tropical herbivore megadiversity can be partitioned into the following components: (A) more host plant species per se , (B) more arthropod species per plant species, (C) higher host specificity of herbivores, or (D) higher species turnover (beta diversity) in the tropics than in the temperate zone. We scrutinize recent studies addressing each component and identify methodological differences among them. We find substantial support for the importance of component A, more tropical host species. A meta-analysis of published results reveals intermediate to high correlations between plant and herbivore diversity, accounting for up to 60% of the variation in insect species richness. Support for other factors is mixed, with studies too scarce and approaches too uneven to allow for quantitative summaries. More research on individual components is unlikely to resolve their relative contribution to overall herbivore diversity. Instead, we call for the adoption of more coherent methods that avoid pitfalls for larger-scale comparisons, for studies assessing different components together rather than singly, and for studies that investigate herbivore beta-diversity (component D) in a more comprehensive perspective.  相似文献   

14.

During the last two decades the nutrient loading to Danish lakes has been reduced with the aim to improve water quality. However, because of internal P-loading and biological resistance, the expected improvement has been delayed. Therefore, to reduce the duration of the recovery period and to accelerate recolonisation of submerged macrophytes, several lakes have been biomanipulated with the purpose of improving the top-down control by zooplankton. To elucidate the effects of these measures, we undertook an analysis of data on submerged macrophytes monitored annually in 17 lakes for 8 years. The results obtained show that the macrophyte coverage in non-biomanipulated lakes remained relatively stable following the external nutrient reduction. However, a small increase in macrophyte coverage occurred in a few lakes. In two of the four biomanipulated lakes, in contrast, macrophyte coverage increased from 0 up to 80% within 2–4 years following manipulation. In the other two lakes macrophyte colonisation failed. However, in lakes with a successful recolonisation, large inter-annual variations in macrophyte coverage, varying between 2 and 80% among growth seasons, occurred. We conclude that the potential of macrophyte recolonisation after nutrient loading reduction on the short term is higher in biomanipulated lakes than in lakes subjected to loading reduction only, although biomanipulation does not provide a guarantee for macrophyte recolonisation or a stable macrophyte community when colonisation occurs.

  相似文献   

15.
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant–herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.  相似文献   

16.
1. The issue of freshwater species being threatened by invasion has become central in conservation biology because inland waters exhibit the highest species richness per unit area, but apparently have the highest extinctions rates on the planet. 2. In this article, we evaluated the effects of an exotic, invasive aquatic grass (Urochloa subquadripara– tropical signalgrass) on the diversity and assemblage composition of native macrophytes in four Neotropical water bodies (two reservoirs and two lakes). Species cover was assessed in quadrats, and plant biomass was measured in further quadrats, located in sites where tropical signalgrass dominated (D quadrats) and sites where it was not dominant or entirely absent (ND quadrats). The effects of tropical signalgrass on macrophyte species richness, Shannon diversity and number of macrophyte life forms (a surrogate of functional richness) were assessed through regressions, and composition was assessed with a DCA. The effects of tropical signalgrass biomass on the likelihood of occurrence of specific macrophyte life forms were assessed through logistic regression. 3. Tropical signalgrass had a negative effect on macrophyte richness and Shannon and functional diversity, and also influenced assemblage composition. Emergent, rooted with floating stems and rooted submersed species were negatively affected by tropical signalgrass, while the occurrence of free‐floating species was positively affected. 4. Our results suggest that competition with emergent species and reduction of underwater radiation, which reduces the number of submersed species, counteract facilitation of free‐floating species, contributing to a decrease in plant diversity. In addition, homogenisation of plant assemblages shows that tropical signalgrass reduces the beta diversity in the macrophyte community. 5. Although our results were obtained at fine spatial scales, they are cause for concern because macrophytes are an important part of freshwater diversity.  相似文献   

17.
Distribution, diurnal variability, aggregation of zooplankton in the littoral zone of lakes and effect of various macrophyte species on the structure of its community are considered. It is shown that the horizontal migrations of zooplankton, both direct and reverse ones, are caused mainly by the pressure of fish. The effect of predacious zooplankton is less important and is directed mainly at small-sized species. The intensity of horizontal migrations of zooplankton decreases with depth, while the effect of shore avoidance is observed for the large-sized zooplankton species and is caused not only by the pressure of fish but also by other factors, most likely abiotic. The problem of interaction between macrophytes and zooplankton cannot be reduced to the role of macrophytes as a refuge. Allelopathic properties of macrophytes, competitive relations between separate zooplankton species in macrophyte thickets, as well as the effect of predacious invertebrates associated with macrophytes on zooplankton remain unclear. The role of macrophytes as a factor causing changes in hydrodynamic processes in the littoral regions of lakes is also unknown.  相似文献   

18.
During the 1950s, the submerged vegetation of shallow lakes in north‐eastern Germany was dominated by nutrient tolerant species, with Ceratophyllum demersum and Myriophyllum sp. being most common. Almost one third of 300 investigated lakes had already lost their submerged macrophytes at that time. Very shallow lakes showed either high or low macrophyte abundance. Increasing depth resulted in medium macrophyte abundances, which may contribute to the stabilisation of local or temporary clearwater states. Forty years later, the percentage of lakes without macrophytes had dramatically increased. Between 55 and 85% of the investigated lakes showed a low abundance. The decline was most pronounced in very shallow lakes. The majority of the investigated lakes showed summer TP concentrations below 100 μg L–1, but no colonisation by submerged macrophytes, which indicates a resilience against re‐colonisation.  相似文献   

19.
External nutrient loading was reduced over the past decades as a measure for improving the water quality of eutrophic lakes in western Europe, and has since been accelerated by the adoption of the European Water Framework Directive (WFD) in 2000 (EC, 2000). A variety of eutrophication-related metrics have indicated that the response of biological communities to this decreased nutrient loading has been diverse. Phytoplankton, a major component of the pelagic community, often responded rapidly, whereas a significant delay was observed for submerged macrophytes colonizing littoral areas. In this study we tested whether assessment methods developed for phytoplankton and macrophytes in lakes during Germany's implementation of the WFD reflect this differential response. An assessment of 263 German lakes confirmed that a lower ecological state was recorded when based on the biological quality element (BQE) for macrophytes than the BQE for phytoplankton during the investigated period (2003–2012). On average, lakes had a moderate ecological status for both phytoplankton and macrophyte BQEs, but differences of up to three classes were observed in single cases. Long-term data were available for five lowland lakes subject to strong reductions in phosphorus loading. Their phytoplankton-based assessments indicated a constant improvement of the ecological status in parallel to decreasing water phosphorus concentrations. In contrast, macrophyte-based assessments indicated a 10–20 year delay in their ecological recovery following nutrient load reduction. This delay was confirmed by detailed data on the temporal development of macrophyte species diversity and maximum colonization depths of two lakes after nutrient load reduction. We conclude that the available WFD assessment methods for phytoplankton and macrophyte BQEs are suitable to track the differential response of pelagic and littoral areas to nutrient load reductions in German lakes.  相似文献   

20.
Macrophytes are widely recognized for improving water quality and stabilizing the desirable clear‐water state in lakes. The positive effects of macrophytes on water quality have been noted to be weaker in the (sub)tropics compared to those of temperate regions. We conducted a global meta‐analysis using 47 studies that met our set criteria to assess the overall effects of macrophytes on water quality (measured by phytoplankton chlorophyll a concentration, total nitrogen concentration, total phosphorus concentration, Secchi depth and the trophic state index) and to investigate how these effects correlate with latitude using meta‐regressions. We also examined if the effects of macrophytes on lake‐water quality differ with growth form and study design in (sub)tropical and temperate areas by grouping the data and then comparing the effect sizes. We found that macrophytes significantly reduced phytoplankton chlorophyll a concentration, total nitrogen concentration, total phosphorus concentration, as well as the trophic state index, but they did not have a significant overall effect on Secchi depth. The effects of macrophytes on reducing phytoplankton chlorophyll a concentration, total nitrogen concentration and the trophic state index did not differ with latitude. However, the reduction of total phosphorus concentration was greater at lower latitudes. We showed that at lower latitudes, the positive effects of macrophytes on water quality are similar to or greater than those at higher latitudes, thus challenging the prevailing paradigm of macrophytes being less effective at enhancing lake‐water quality in the (sub)tropics. Furthermore, our data showed that the macrophyte effects vary by growth forms, and the growth forms that positively affect water quality differ between the (sub)tropical and temperate areas. We showed a lack of significant macrophyte effects in surveys within and outside macrophyte stands, suggesting difference in the sensitivities of study designs or possibly weaker effects of macrophytes in lakes compared to experimental settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号