首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.  相似文献   

2.
The aim of this paper was to make a first approximation of the fungal spore airborne content in Valladolid along the year, constructing the first spore calendar for the middle-west of Spain. So that, we monitored the city during 2005 and 2006, being Cladosporium the most abundant type, present all over the year (together with Pleospora). The greatest atmospheric spore diversity was observed in April in contrast with February. The intra-diurnal pattern for Alternaria, Cladosporium and Dreschlera was very similar with an hourly concentration percentage decreasing along two periods, whereas Coprinus, Ganoderma and Periconia showed a clearly nocturnal pattern. The meteorological parameter that most influenced airborne spore concentrations was temperature, significantly and positively in the case of dry-air spores but negatively for wet-air spores.  相似文献   

3.
Introduction Fungal spores constitute an important fraction of bioaerosols in the atmosphere. Objectives To analyse the content of Alternaria and Cladosporium spores in the atmosphere of Beja and the effect of meteorological conditions on their concentrations. Methodology The daily and hourly data of Alternaria and Cladosporium fungal spores concentration in the atmosphere of Beja were monitored from April 12, 2012 to July 30, 2014, based on the Portuguese Aerobiology Network methodology. The influence of meteorological conditions on the studied types of fungal spore concentrations was assessed through Spearman’s correlation analysis. Results During the study period, 20,741 Alternaria spores and 320,862 Cladosporium spores were counted. In 2013, there were 5,822 Alternaria spores and 123,864 Cladosporium spores. The absolute maximum concentrations of Alternaria and Cladosporium spores were recorded on November 8, 2013, with 211 and 1301 spores/m3, respectively. Temperature, insolation and wind direction parameters showed a positive correlation with Alternaria and Cladosporium spore levels, while relative humidity and precipitation presented a negative correlation, which is statistically significant. Wind speed only showed a statistically significant positive correlation in terms of Alternaria spore levels. Conclusion Alternaria and Cladosporium spores are present in the atmospheric air of Beja throughout the year, with the highest concentration period occurring during spring and autumn. There was a clear effect of meteorological parameters on airborne concentrations of these fungal spores.  相似文献   

4.
Fungal spores of Alternaria and Cladosporium are ubiquitous components of both indoor and outdoor air samples and are the main causes of human respiratory allergies. Monitoring these airborne fungal spores during 2009–2014 was carried out by means of Hirst-type spore trap to investigate their airborne spore concentrations with respect to annual load, seasonality and overall intradiurnal pattern. Alternaria and Cladosporium spores are present throughout the year in the atmosphere of Tétouan, although they show seasonal variations. Despite important differences between years, their highest levels presented a first peak during spring and a higher second peak in summer or autumn depending on the year. The spore concentrations were homogeneously distributed throughout the day with slight increase of 7.6 and 3.7% on average between 12–14 and 14–16 h for Alternaria and Cladosporium, respectively. The borderline of 3000 sp/m3 of Cladosporium linked to the occurrence of allergic diseases was exceeded between 13 and 31 days. Airborne spores of Alternaria overcame the threshold value of 100 sp/m3 up to 95 days, suggesting that Cladosporium and Alternaria could be clinically significant aeroallergens for atopic patients.  相似文献   

5.
In Uruguay, aeromycological studies are restricted to a gravimetric analysis performed from December 1942 to March 1944 in Montevideo where spores of Pucciniaceae, Alternaria and Helminthosporium were the only specimens identified. Daily monitoring of airborne fungal spores was carried out for the first time in Montevideo, from April 2012 to March 2014, using a Rotorod sampler in order to evaluate the seasonal variation and influence of meteorological parameters. A total of 548,309.68 spores/m3 were recorded which belong to anamorphs of Higher Fungi (69.18 %), Phyla Ascomycota (12.62 %), Basidiomycota (8.01 %), Oomycota (0.37 %) and Myxomycota (0.06 %). Airborne spores occurred in Montevideo throughout the whole year. However, a seasonal pattern was revealed, with the highest concentrations recorded in autumn and summer. The most abundant spore types were Cladosporium (53.22 %), Alternaria (6.62 %), Didymella Group (5.86 %), Leptosphaeria Group (4.37 %) and Coprinus (4.3 %). Temperature appeared to be the most influential meteorological factor correlating significantly and positively with total spore, Cladosporium, Alternaria and Didymella Group abundance. Relative humidity influenced positively total spore, Cladosporium and Didymella Group concentrations while a weak negative association was obtained for Alternaria. Wind speed correlated negatively with total spore, Cladosporium, Alternaria and Didymella Group. Precipitation showed a negative influence on Alternaria, while positive correlations were observed for Didymella Group. For the first time, fungal spores considered allergenic were recorded in Montevideo atmosphere and the risk of exposure would have been high from December to June. However, long-term sampling is needed to define seasonal prevalence patterns and the influence of meteorological conditions on spore abundance.  相似文献   

6.
A comprehensive survey of airborne fungi has been lacking for the Sydney region. This study determined the diversity and abundance of outdoor airborne fungal concentrations in urban Sydney. Monthly air samples were taken from 11 sites in central Sydney, and culturable fungi identified and quantified. The genus Cladosporium was the most frequently isolated fungal genus, with a frequency of 78 % and a mean density of 335 CFU m?3. The next most frequently encountered genus was Alternaria, occurring in 53 % of samples with a mean of 124 CFU m?3. Other frequently identified fungi, in decreasing occurrence, were as follows: Penicillium, Fusarium, Epicoccum, Phoma, Acremonium and Aureobasidium. Additionally, seasonal and spatial trends of airborne fungi were assessed, with increases in total culturable fungal concentrations experienced in the summer months. The correspondence between a range of key environmental variables and the phenology of airborne fungal propagules was also examined, with temperature, wind speed and proximal greenspace having the largest influence on fungal propagule density. If the greenspace was comprised of grass, stronger associations with fungal behaviour were observed.  相似文献   

7.
Fungi associated with black point were isolated from three highly susceptible wheat genotypes in the North China Plain. The 21 isolates represented 11 fungal genera. The most prevalent genera were Alternaria (isolation frequency of 56.7%), Bipolaris (16.1%), and Fusarium (6.0%). The other eight genera were Curvularia, Aspergillus, Cladosporium, Exserohilum, Epicoccum, Nigrospora, Penicillium, and Ulocladium; their isolation frequencies ranged from 0.8 to 4.8%. The pathogenicity of the isolates was individually assessed in the greenhouse by inoculating wheat plants with spore suspensions. Ten of the 21 isolates caused significantly higher incidences of black point than that the controls. These isolates belonged to eight fungal species (A. alternata, B. sorokiniana, B. crotonis, B. cynodontis, C. spicifera, F. equiseti, E. rostratum, and E. sorghinum) based on morphological traits and phylogenetic analysis. The average incidences of black point in the eight fungal species were 32.4, 54.3, 43.0, 41.9, 37.2, 38.8, 50.1, and 34.1%, respectively. B. sorokiniana and A. alternata were determined to be the most important pathogens in the North China Plain based on fungal prevalence and symptom severity. This study is the first to identify E. rostratum as a major pathogen causing black point in wheat.  相似文献   

8.
The aim of this study was to present the first airborne fungal spore research results of SE of Turkey. The presence and abundance of fungal spores were investigated with a Hirst-type volumetric spore trap (Lanzoni, VPSS 2000) for 2 years between the periods January 2010 and December 2011. A total of 211,521 spores and 47 fungal taxa belonging to Anamorphic Fungi, Phyla Ascomycota and Basidiomycota were recorded. Aspergillus/Penicillium spores type, unidentified spores, spores of Myxomycota and hyphal fragments were also recorded as groups. The relationship between fungal spore counts and several meteorological parameters was examined. Cladosporium was determined as the predominant genus (56.48 %); hyphal fragments (14.94 %), Ustilago (13.96 %) and Alternaria (5.79 %) were revealed as the common fungal aerosols of Gaziantep atmosphere. With this study, the first aeromycological survey of SE of Turkey has been conducted and new information on the field of aerobiology in Turkey has been introduced.  相似文献   

9.
Larvae of Bradysia agrestis, a phytopathogen-transmitting insect vector in East Asia, were sampled from geographically (ecologically) segregated regions to identify their intestinal fungal flora. A total of 24 fungal strains were isolated from the insect vectors and selected based on morphological differences. In addition, 38 fungal strains were isolated from the ulcerated parts of invaded host plants by the same method, revealing the impact of vector fungal flora on their host plants. For molecular identification of the fungi, internal transcribed spacer (ITS) regions were amplified and sequenced. Their sequences were compared with sequences of other fungal strains obtained from NCBI GenBank, and their phylogeny was determined. The dominant fungal genera in the insect vector were Penicillium (25%), Aspergillus (21%), and Cladosporium (13%). In plant scar lesions, most fungal isolates belonged to the genera Fusarium (31.6%), Phoma (7.8%), Didymella (7.8%), and Epicoccum (7.8%). Fungal genera in vectors or host plant lesions differed by study site. Furthermore, diversity indices by study site showed clear differences based on Margalef’s richness (2.06, 2.40, 3.04), and Menhinick’s (1.89, 2.12, 2.53), and Simpson’s indices (0.14, 0.07, 0.07). In addition, common fungal strains in insect vectors were found to be closely related to members of the genera Cladosporium, Penicillium, or Aspergillus. Among these strains, those showing the highest homology with Aspergillus terreus, which regarded as beneficial fungal genera could be considered ideal paratransgenesis candidates. Some other fungal strains from vectors or ulcerated plant parts from each study site after B. agrestis invasion may be harmful in terms of plant disease or agrifood safety. This study provides information on the fungal microbiota of B. agrestis, an emerging problem in East Asia, and proposes paratransgenesis candidates to control this insect vector. Furthermore, potential transferable pathogens or commensal fungi were revealed by comparing the fungal biota between the insect gut and the ulcerated parts of the invaded host plants.  相似文献   

10.
This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≥6000 s m?3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was v s ≤ 2.5 m s?1 indicating warm days with a light breeze.  相似文献   

11.
To investigate contamination of ground red pepper with fungi and mycotoxin, we obtained 30 ground red pepper samples from 15 manufacturers in the main chili-pepper-producing areas in Korea. Fungal contamination was evaluated by spreading diluted samples on potato dextrose agar plates. The total fungi counts ranged from 0 to 7.3 × 103 CFU/g. In the samples, the genus Aspergillus had the highest incidence, while Paecilomyces was isolated most frequently. The next most frequent genera were Rhizopus, Penicillium, Cladosporium, and Alternaria. Within Aspergillus, A. ruber was predominant, followed by A. niger, A. amstelodami, A. ochraceus, A. terreus, A. versicolor, A. flavus, and A. fumigatus. The samples were analyzed for aflatoxins, ochratoxin A, and citrinin by ultra-perfomance liquid chromatography (UPLC) with a fluorescence detector. Ochratoxin A was detected from three samples at 1.03?2.08 μg/kg, whereas no aflatoxins or citrinin were detected. To test the potential of fungal isolates to produce aflatoxin, we performed a PCR assay that screened for the norB-cypA gene for 64 Aspergillus isolates. As a result, a single 800-bp band was amplified from 10 A. flavus isolates, and one Aspergillus sp. isolate. UPLC analyses confirmed aflatoxin production by nine A. flavus isolates and one Aspergillus sp. isolate, which produced total aflatoxins at 146.88?909.53 μg/kg. This indicates that continuous monitoring of ground red pepper for toxigenic fungi is necessary to minimize mycotoxin contamination.  相似文献   

12.
Two hundred and thirteen fungal cultures were recovered from 88 soil samples from different parts of Indonesia; 39.4% belonged to the genusPenicillium, 19.7% to the genusAspergillus, 9.9% to the genusFusarium and the rest to different systematic groups. One hundred and fifty two cultures were antibiotically active; 80% of these were antagonists ofBacillus subtilis, 55% ofEscherichia coli, 20% ofSaccharomyces cerevisiae and 37% ofCandida pseudotropicalis. In agreement with previous observations it was found that the activity spectrum of antagonists was related to the altitude above sea level at which they were found. As the altitude increased, the incidence of antagonists with both antibacterial and antifungal activity decreased, but the incidence of antagonists with only antibacterial or only antifungal activity increased. Fungi of the generaPenicillium andAspergillus were the most frequent antibiotic producers. The incidence of penicillin producers was much lower than in collections of fungi isolated in higher latitudes (China, Bulgaria, Slovakia).  相似文献   

13.
Decalepis arayalpathra, an endangered, endemic ethnomedicinal plant from southern Western Ghats, India, is targeted for its aromatic and medicinal properties. This study aimed at to identify fungal endophyte populations associated with healthy and diseased roots of this perennial shrub. Healthy and rotted root samples of D. arayalpathra were collected, fungal endophytes assemblages were identified both by culture-dependent and culture-independent approaches, further sequenced and the retrieved sequences were analysed with the reference sequences in GenBank to know their phylogenetic relationships. Analysis of the ITS rDNA region generated 24 different Ascomycota and three Basidiomycota taxa. Trichoderma sp. was most abundant in healthy and diseased root samples, while Penicillium and Aspergillus were confined to healthy roots. Furthermore, Fusarium solani, Fusarium oxysporum and Mucor velutinosus were found to be the most frequent fungi identified from the rotted root samples, thus substantiated to be the cause for D. arayalpathra decline in the wild. Interestingly, the strains assigned to Fusarium sp. were isolated from diseased roots showing typical clearly visible symptoms, such as a severe brown discolouration on the taproot. Molecular profiling of all the pure fungal isolates, viz., Trichoderma, Penicillium, Aspergillus, Fusarium and Mucor, revealed high sequence similarities (≥ 98 %) to corresponding reference sequences. Sequencing of Trichoderma pure cultures isolated from healthy and diseased roots revealed sequence similarities to Trichoderma harzianum, T. hamatum, T. koningiopsis, T. asperellum, T. pubescens and Hypocrea sp. This confirms the morphological examinations, as Hypocrea is the teleomorph stage of Trichoderma sp. This study signifies the first work pertaining to the taxonomy of the fungal endophytic community of D. arayalpathra, and the results reported in this work may help to ascertain the cause of root rot disease often perceived in D. arayalpathra. Also, it could be useful to identify the promising endophytic communities against the root rot diseases occurring in D. arayalpathra.  相似文献   

14.
Dust storms carry large amounts of plant detritus and microorganisms that may cause diseases in humans, animals or plants. These storms are frequent in Kuwait throughout the year. This research was conducted to identify the fungal species carried by the dust storms in Kuwait, originating from the northwesterly direction, with emphasis on plant pathogens. Fungi were isolated from settled dust samples and identified using established microbiological and molecular approaches. Fungal isolates identified as Fusarium oxysporum from settled dust were examined for pathogenicity using a number of crop plants. In total, 17 genera of fungi were identified in the dust samples. These fungi included plant pathogens or facultative plant parasites that were transported in the dust storms as viable propagules. The most common dust-carried fungi belonged to the genera Fusarium, Alternaria, Ulocladium, Phoma, Aspergillus, Acremonium and Penicillium. The F. oxysporum isolates that had been characterized by partial 18S rRNA gene sequencing were pathogenic, causing root and stem rot in tomato, bean and cucumber, but not squash.  相似文献   

15.
In 2012 to 2014, Philippine green coffee beans from Coffea arabica in Benguet and Ifugao; Coffea canephora var. Robusta in Abra, Cavite, and Ifugao; and Coffea liberica and Coffea excelsea from Cavite were collected and assessed for the distribution of fungi with the potential to produce ochratoxin A (OTA). The presence of fungal species was evaluated both before and after surface sterilization. There were remarkable ecological and varietal differences in the population of OTA-producing species from the five provinces. Aspergillus ochraceus, A. westerdijkiae, and Penicillium verruculosum were detected from Arabica in Benguet and Ifugao while Aspergillus carbonarius, Aspergillus niger, and Aspergillus japonicus were isolated in Excelsa, Liberica, and Robusta varieties from Abra, Cavite, and Davao. Contamination by Aspergillus and Penicillium species was found on 59 and 19 %, respectively, of the 57 samples from five provinces. After disinfection with 1 % sodium hypochlorite, the levels of infection by Aspergillus and Penicillium fell to 40 and 17 %, respectively. A total of 1184 fungal isolates were identified to species level comprising Aspergillus sections Circumdati (four species), Clavati (one), Flavi (one), Fumigati (one), Nigri (three), and Terrie (one). Within section Circumdati, 70 % of A. ochraceus produced OTA as high as 16238 ng g?1 while 40 % of A. westerdijkiae produced maximum OTA of 36561 ng g?1 in solid agar. Within section Nigri, 16.76 % of A. niger produced OTA at the highest 18439 ng g?1, 10 % of A. japonicus at maximum level of 174 ng g?1, and 21.21 % of A. carbonarius yielded maximum OTA of 1900 ng g?1. Of the 12 species of Penicillium isolated, P. verruculosum was ochratoxigenic, with a maximum OTA production of 12 ng g?1.  相似文献   

16.
Wheat is the most important cereal produced in Iran. A mycological survey was carried out for the first time, on the stored wheat samples in Tehran, East Azarbayejan and Mazandaran provinces in 2007. Exogenous and endogenous fungi, were isolated by the method of flotation with Malachite green agar (MGA 0.25) and Freeze blotter techniques respectively. In this study, 46 species belonging to 23 different genera were isolated.Cladosporium spp. (57.1–89.2%) andAlternaria spp. (82.4–100%) species were the predominant fungal species identified as endogenous mycoflora. The predominant exogenous fungi werePenicillium spp. (78.4–92.8%) andAspergillus spp. (71.4–85.7%) species.Fusarium proliferatum was the most prevalent species ofFusarium isolates.Aspergillus niger (39.4%) andAspergillus flavus (36.7%) were the predominantAspergillus species identified as exogenous mycoflora.Aspergillus flavus (26.6%) was the predominantAspergillus species identified as endogenous mycoflora. Flotation method with MGA 0.25 recommended for isolating of hyaline fungi from wheat cereals. In this study one isolate fromFusarium species was isolated on the basis of morphology and ribosomal internal transcribed spacer classified asFusarium langsethiae but on the basis of partial translation elongation factor-1alpha gene grouped withFusarium sporotrichioides. To our knowledge, this is the first report aboutF. cf.langsethiae in Iran and Asia.  相似文献   

17.
This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.  相似文献   

18.
Alternaria and Cladosporium spores belong to the most frequent and allergenic particles in bioaerosol in the temperate climate. The investigation of Alternaria and Cladosporium spore concentrations was performed in two cities in Poland, Szczecin and Cracow, in 2004–2013. The meteorological parameters taken to assess their impact on fungal spores were average, maximum and minimum temperature, relative humidity and average wind velocity. In order to reveal whether changes in dynamics of spore seasons are driven by meteorological conditions, ordination methods were applied. Canonical correspondence analysis was used to explore redundancy among the predictors (meteorological parameters). Prior to ordination analyses, the data were log(x)-transformed. Concentrations of Alternaria and Cladosporium spores were significantly higher in Szczecin comparing to Cracow, but it was also observed the decreasing trend in the spore concentrations in Szczecin. As regards temperature, it was higher in Cracow and was still increasing in the studied years. Relative humidity and wind velocity were significantly lower in Cracow. In Szczecin meteorological conditions did not explain changes in spore season characteristics (insignificant redundancy analysis models), while in Cracow’s redundancy analysis models indicated that spore season parameters were in over 40 % determined by meteorological conditions, mainly air temperature and wind velocity. If they increase, the peak value, total number of spores and their average concentrations in a season will also increase.  相似文献   

19.
Ascospores are frequently found as airborne fungal spores and recognized in various areas as an important cause of respiratory allergies. The main objective of the study was to determine the relationship between airborne ascospores and meteorological parameters using multivariate canonical correspondence analysis (CCA) and Spearman correlation. The aerobiological monitoring of fungal spores was performed over 5 years (2009–2013) using a Burkard volumetric spore traps. Seven main types of ascospores were identified: Leptosphaeria, Pleospora, Venturia, Diatrype, Chaetomium, Sporormiella and Ascobolus. The CCA results showed that all applied variables accounted for 27.4 % of the total variance in the spore data in the 5 years. The largest contribution to the total variance was explained in this period by the maximum air temperature (10.3 %). The effect of meteorological factors varied among years. The highest values of the total variance in the spore data, explained by the statistically significant variables, were observed in 2012 (28.6 %), with the highest contribution to minimum relative humidity (8.0 %). Most ascospores showed positive and statistically significant correlation with relative humidity and rainfall. In contrast, ascospores of Chaetomium were negatively correlated with precipitation and the relative humidity and positively with temperature. Based on these results, epidemiological and allergological studies must deserve more attention to estimate the allergenic potential of the ascospores.  相似文献   

20.
Fungal endophytes are the most ubiquitous and highly diverse microorganisms that inhabit the interior of healthy plants. They are important in plant ecology and offer untapped potential to improve plant health and productivity in agroecosystems. The endophytic assemblage of avocado is poorly understood; therefore, surveys of fungal endophytes of Persea americana Mill. (Avocado) in South Florida organic and conventional orchards were conducted. A total of 17 endophytic fungal species were recovered from healthy avocado terminal branches. Endophytic fungal species were identified by rDNA sequencing of the internal transcribed spacer (ITS) region, using UNITE Species Hypotheses to reliably assign a taxon name, and determined as belonging to the genera Alternaria, Cladosporium, Colletotrichum, Corynespora, Diaporthe, Lasiodiplodia, Neofusicoccum, Neopestalotiopsis, Phyllosticta, and Strelitziana. Endophyte community assemblage differed between organic and conventional agroecosystems. This is the first report of Alternaria eichhorniae, Cladosporium tenuissimum, Corynespora cassiicola, Colletotrichum alatae, Diaporthe fraxini-angustifoliae, Lasiodiplodia gonubiensis, Neofusicoccum algeriense, Neofusicoccum andinum, Neopestalotiopsis foedans, Phyllosticta capitalensis, and Strelitziana africana as endophytes of avocado. Evaluation using pathogenicity tests on avocado leaves and terminal branches showed that endophytic fungal isolates did not cause disease symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号