首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of antioxidant systems in wild plant adaptation to salt stress   总被引:1,自引:1,他引:0  
Wild plants differing in the strategies of adaptation to salinity were grown for six weeks in the phytotron and then subjected to salt stress (100 mM NaCl, 24 h). The activities of principal antioxidant enzymes and the accumulation of sodium ions and proline were studied. Independently of the level of constitutive salt tolerance, plants of all species tested accumulated sodium ions under salinity conditions but differed in their capability of stress-dependent proline accumulation and superoxide dismutase (SOD) and guaiacol-dependent peroxidase activities. Proline-accumulating species were found among both halophytes (Artemisia lerchiana and Thellungiella halophila) and glycophytes (Plantago major and Mycelis muralis). The high activities of ionically-bound and covalently bound peroxidases were characteristic of Th. halophila plants. High constitutive and stress-induced SOD activities were, as a rule, characteristic of glycophytes with the low constitutive proline level: Geum urbanum and Thalictrum aquilegifolium. Thus, a negative correlation was found between proline content and SOD activity in wild species tested; it was especially bright in the halophyte Th. halophila and glycophyte G. urbanum. An extremely high constitutive and stress-induced levels of proline and peroxidase activity in Th. halophila maybe compensate SOD low activity in this plant, and this contributed substantially into its salt resistance. Thus, monitoring of stress-dependent activities of some antioxidant enzymes and proline accumulation in wild plant species allowed a supposition of reciprocal interrelations between SOD activity and proline accumulation. It was also established that the high SOD activity is not obligatory trait of species salt tolerance. Moreover, plants with the high activity of peroxidase and active proline accumulation could acclimate to salts stress (100 mM NaCl, 24 h) independently of SOD activity.  相似文献   

2.
3.
The effects of treatment with nitric oxide donor sodium nitroprusside (SNP, 0.5 mM) on salt tolerance of wild type (Col–0) Arabidopsis thaliana plants and Arabidopsis thaliana plants transformed with the bacterial salicylate hydroxylase gene (NahG) were compared. Basic salt tolerance level (200 mM NaCl) was higher in NahG transformants. Under salt stress conditions, these plants showed higher activity levels for antioxidant enzymes as well as higher content of sugars and anthocyanins. The treatment with NO donor induced salt tolerance in the plants of both genotypes, which could be observed as less strong growth inhibition, reduced oxidative damage, and preservation of chlorophyll pool in leaves. After the exposure to salt stress, the activity of both superoxide dismutase and guaiacol peroxidase was higher in SNP-treated wild type plants and NahG transformants than in the nontreated plants. After the imposition of salt stress, proline content in leaves of the wild type plants treated with the nitric oxide donor was lower than in the leaves of the nontreated plants. In contrast, SNP treatment of NahG transformants led to a significant increase in the proline content in leaves under the salt stress conditions. Conclusions have been made that wild type Col-0 plants and NahG transformants differ in how their systems of protection against salt stress are activated and that nitric oxideinduced mobilization of protection systems in A. thaliana may not require the presence of salicylate.  相似文献   

4.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

5.
Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus, which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.  相似文献   

6.
7.
Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes—Cakile maritima and Thellungiella salsuginea—and a glycophyte—Arabidopsis thaliana— to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.  相似文献   

8.
The effect of hydrogen peroxide treatment on the salt tolerance of wild-type Arabidopsis thaliana L. plants (Col-0) and plants transformed with the bacterial salicylate hydroxylase gene (NahG) was studied. The base tolerance to salt stress caused by 200 mM of NaCl in solution culture was higher in plants with the NahG genotype in comparison with the wild-type plants. Growth inhibition was observed for wild-type plants under the action of exogenous hydrogen peroxide, which was not observed for the NahG transformants; salt tolerance increased in the both types of plants after treatment, which was assessed based on the growth indicators and the ability to preserve the chlorophyll pool following NaCl treatment. The content of endogenous Н2О2 in the leaves of wild-type plants increased significantly following exogenous hydrogen peroxide treatment and salt stress, while it practically did not change in the leaves of the NahG genotype. The SOD activity increased in both genotypes after treatment with exogenous hydrogen peroxide, and remained at an elevated level after salt stress in comparison with the nontreated plants. Furthermore, the catalase activity increased in leaves of the salicylate-deficient genotype but not in the Col-0 genotype. The guaiacol peroxidase activity increased in plants of both genotypes under the action of hydrogen peroxide and salt stress, with the NahG plants demonstrating a higher degree of increase. The Н2О2 treatment facilitated the increase of the proline content in leaves of the plants of both genotypes under conditions of salt stress. It was concluded that there were hydrogen peroxide signal transduction pathways in Arabidopsis plants that were salicylic acid independent and that the antioxidant system functioned more effectively in salicylate-deficient Arabidopsis plants.  相似文献   

9.
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana.  相似文献   

10.
11.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

12.
In the current investigation, the biological activities of essential oils obtained from organs of Ruta chalepensis plants grown under salt stress (0, 50 and 100 mM NaCl) were analyzed. Their chemical composition was often investigated by GC/FID and GC–MS and the antimicrobial activities towards eight bacteria (Salmonella All, Salmonella K, Escherichia coli 45AG, Escherichia coli 45AI, Staphylococcus aureus 9402, Staphylococcus aureus 02B145, Listeria 477 and Pseudomonas aeruginosa ATCC 10145) and five fungi strains (Aspergillus, Saccharomycee crvisiale, Streptomyces griseus, Fusarium solani and Penicillium thomii) were studied. Results revealed that salt increased essential oil production in leaves at 50 and 100 mM NaCl. A total of 20 compounds were identified in leaves, undecan-2-one, nonan-2-one and geijerene being the dominant ones. In stems, 21 compounds were found; they were dominated by decan-2-one, geijerene, nonan-2-one and undecan-2-one. In contrast, roots exhibited a large variation with 25 volatile compounds and octyl acetate, methyl decanoate, phytyl acetate were the major ones. Salt stress induced significant antibacterial activity changes, mainly in leaves and stems. In leaves, the minimum inhibitory and bactericidal concentration decreased at 100 mM NaCl against Listeria 477, the two strains of E. coli (45AG and 45AI) and P. aeruginosa but it increased versus other bacteria. In stems, salt increased oil antibacterial activity against all strains except P. aeruginosa ATCC 10145. Root oil showed the least antibacterial activity under saline conditions versus Listeria 477 and P. aeruginosa ATCC 10145. As regards antifungal activity, NaCl reduced the antifungal activity of essential oils against the majority of fungi strains.  相似文献   

13.

Objective

To evaluate the quantity of Spirulina cultured in seawater, salt-tolerant strains were screened out and their growth and antioxidant accumulation were studied in different salt concentrations

Results

Salt tolerance of five Spirulina strains were investigated with modified Zarrouk medium (with 200–800 mM NaCl). All strains grew well with 400 mM NaCl; their growth rates were almost same as in the control medium. Spirulina strains FACHB-843 (SP843) and FACHB-972 (SP972) had the highest salt tolerance their growth rates in 600 mM NaCl were nearly same as the control. Both strains produced more carotene, phycocyanin, polysaccharides, proline and betaine in 400–600 mM NaCl than the control. Salt stress also induced them to produce higher activities of superoxide dismutase and peroxidase. Total antioxidant capacities of SP843 and SP972 peaked at 600 and 400 mM NaCl, respectively.

Conclusion

Spirulina strains cultured with seawater accumulate more bioactive substances and will have a higher nutritive value.
  相似文献   

14.
Soil salinity is a major abiotic stress that affects global agricultural productivity. Exploring the mechanisms that halophytes employ to thrive and flourish under saline environments is essential to increase the salt tolerance in sensitive crop species. Of the three halophytes used in this study Salicornia brachiata and Suaeda maritima belong to the same family Chenopodiaceae, while Sesuvium portulacastrum, a mangrove-associated halophyte, belongs to the family Aizoaceae. Assuming that halophytes of same family share similar salt tolerance mechanisms, we generated a suppression subtractive hybridization (SSH1) cDNA library from salt-treated leaf tissues of S. brachiata as tester and that of S. maritima as driver to identify salt-responsive genes unique to S. brachiata. To elucidate the difference in salt-tolerance mechanisms, and to identify salt-tolerance mechanisms amongst different families of halophytes, SSH2 library was generated from salt-treated leaf tissue of S. brachiata as tester and that of S. portulacastrum as driver. Totally, 87 and 49 EST clones representing unique genes were obtained from SSH1 and SSH2 libraries, respectively. Examination of the expression patterns of 17 (SSH1) and 15 (SSH2) differentially expressed genes using semi-quantitative RT-PCR confirmed up-regulation of these genes in shoots in response to salt treatment and elevated CO2 condition, but to a different extent. This study has provided insights into the molecular responses of S. brachiata to salt stress and elevated CO2 conditions.  相似文献   

15.
The contents of Na+, K+, water, and dry matter were measured in leaves and roots of euhalophytes Salicornia europaea L. and Climacoptera lanata (Pall.) Botsch featuring succulent and xeromorphic cell structures, respectively, as well as in saltbush Atriplex micrantha C.A. Mey, a halophyte having bladder-like salt glands on their leaves. All three species were able to accumulate Na+ in their tissues. The Na+ content in organs increased with elevation of NaCl concentration in the substrate, the concentrations of Na+ being higher in leaves than in roots. When these halophytes were grown on a NaCl-free substrate, a trend toward K+ accumulation was observed and was better pronounced in leaves than in roots. Particularly high K+ concentrations were accumulated in Salicornia leaves. There were no principal differences in the partitioning of Na+ and K+ between organs of three halophyte species representing different ecological groups. At all substrate concentrations of NaCl, the total content of Na+ and K+ in leaves was higher than in roots. This distribution pattern persisted in Atriplex possessing salt glands, as well as in euhalophytes Salicornia and Climacoptera. The physiological significance of such universal pattern of ion accumulation and distribution among organs in halophytes is related to the necessity of water absorption by roots, its transport to shoots, and maintenance of sufficient cell water content in all organs under high soil salinity.  相似文献   

16.
The photosynthetic responses to salt stress were examined in a wheat (Triticum aestivum L. cv. Asakaze)–barley (Hordeum vulgare L. cv. Manas) 7H addition line having elevated salt tolerance and compared to the parental wheat genotype. For this purpose, increasing NaCl concentrations up to 300 mM were applied and followed by a 7-day recovery period. Up to moderate salt stress (200 mM NaCl), forcible stomatal closure, parallel with a reduction in the net assimilation rate (P N), was only observed in wheat, but not in the 7H addition line or barley. Since the photosynthetic electron transport processes of wheat were not affected by NaCl, the impairment in P N could largely be accounted for the salt-induced decline in stomatal conductance (g s), accompanied by depressed intercellular CO2 concentration and carboxylation efficiency. Both, P N and nonstomatal limitation factors (Lns) were practically unaffected by moderate salt stress in barley and in the 7H addition line due to the sustained g s, which might be an efficient strategy to maintain the efficient photosynthetic activity and biomass production. At 300 mM NaCl, both P N and g s decreased significantly in all the genotypes, but the changes in P N and Lns in the 7H addition line were more favourable similar to those in wheat. The downregulation of photosynthetic electron transport processes around PSII, accompanied by increases in the quantum yield of regulated energy dissipation and of the donor side limitation of PSI without damage to PSII, was observed in the addition line and barley during severe stress. Incomplete recovery of P N was observed in the 7H addition line as a result of declined PSII activity probably caused by enhanced cyclic electron flow around PSI. These results suggest that the better photosynthetic tolerance to moderate salt stress of barley can be manifested in the 7H addition line which may be a suitable candidate for improving salt tolerance of wheat.  相似文献   

17.
White goosefoot plants (Chenopodium album L. of the family Chenopodiaceae) grown at various NaCl concentrations (3–350 mM) in the nutrient solution were used to study the cell ultrastructure as well as the qualitative and quantitative composition of fatty acids in the lipids of vegetative organs. In addition, the biomass of Ch. album vegetative organs, the water content, and the concentrations of K+, Na+, and Cl were determined. The growth rates of plants raised at NaCl concentrations up to 200–250 mM were the same as for the control plants grown at 3 mM NaCl; the growth parameters remained rather high even at NaCl concentrations of 300–350 mM. The water content in Ch. album organs remained high at all NaCl concentrations tested. Analysis of the ionic status of Ch. album revealed a comparatively high K+ content in plant organs. At low NaCl concentrations in the nutrient solution, K+ ions were the dominant contributors to the osmolarity (the total concentration of osmotically active substances) and, consequently, to the lowered cell water potential in leaves and roots. As the concentration of NaCl was increased, the plant organs accumulated larger amounts of Na+ and Cl, and the contribution of these ion species to osmolarity became increasingly noticeable. At 300–350 mM NaCl the contribution of Na+ and Cl to osmolarity was comparable to that of K+. An electron microscopy study of Ch. album cells revealed that, apart from the usual response to salinity manifested in typical ultrastructural changes of chloroplasts, mitochondria, and the cytosol, the salinity response comprised the enhanced formation of endocytic structures and exosomes and stimulation of autophagy. It is supposed that activation of these processes is related to the removal from the cytoplasm of toxic substances and the cell structures impaired by salt stress conditions. The qualitative and quantitative composition of fatty acids in the lipids of Ch. album organs was hardly affected by NaCl level. These findings are consistent with the high salt tolerance of Ch. album, manifested specifically in retention of growth functions under wide-range variations of NaCl concentration in the nutrient solution and in maintenance of K+, Na+, and Cl content in organs at a constant level characteristic of untreated plants.  相似文献   

18.
19.
In vitro growth, development, total soluble proteins and peroxidase profiles of Salvadora oleoides and Salvadora persica under NaCl stress were analysed in the present investigation. The plants are evergreen haloxeric tree species of family Salvadoraceae. Shoot apex from natural plants were initially used for screening of NaCl tolerance on MS culture medium. Shoot apex of S. oleoides and S. persica could survive optimally up to 200 and 100 mM NaCl. Axillary buds from nodal shoot segments of S. oleoides and S. persica were activated on 6 and 4 μM BAP, and were used further for extraction of total soluble proteins and peroxidases. Total soluble proteins were increased up to 150 mM NaCl in S. oleoides, but decline above 50 mM NaCl in S. persica. Peroxidase activity remained almost constant in S. oleoides at all the concentrations and duration of NaCl, but increased at 100 mM NaCl during fourth week of treatment in S. persica. Eleven peroxidase isozymes were observed in zymogram of S. oleoides. Isozymes P1, P2, P3, and P4 were slightly appeared, but P6 isozyme was lacking in S. persica. The P5 isozyme was more prominent in S. persica than S. oleoides. Isozyme P9 of S. persica was visible during the first week of NaCl treatment, but disappeared in the fourth week. Molecular biology of these plants can be useful further for the understanding of stress tolerance mechanisms for prospects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号