首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.  相似文献   

2.
Chromatin structure and dynamics: functional implications   总被引:4,自引:0,他引:4  
  相似文献   

3.
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.  相似文献   

4.
Nucleosome remodeling by the hSWI/SNF complex and other chromatin remodeling complexes can cause translocation (sliding) of the histone octamer in cis along DNA. Structural and biochemical evidence suggest that sliding involves a DNA twist-diffusion process whereby the DNA rotates about the helical axis without major displacement from the surface of the nucleosome and that this process may be driven by torsional stress within the DNA. We report that hSWI/SNF efficiently catalyzes sliding of nucleosomes containing branched DNAs as steric blocks to twist-diffusion and a nick to allow dissipation of torsional stress within the nucleosome. These results suggest that SWI/SNF-catalyzed nucleosome sliding does not occur exclusively via a simple twist-diffusion mechanism and support models in which the DNA maintains its rotational orientation to and is at least partially separated from the histone surface during nucleosome translocation.  相似文献   

5.
真核细胞中,作为染色质基本结构单元的核小体参与调控基因的转录、DNA复制、重组以及RNA剪接等诸多生物学过程。阐明核小体定位机制并准确预测核小体在染色体上的位置对解读染色质结构与功能有重要生物学意义。在过去30多年时间里,研究人员发展了多种预测核小体位置的方法。最理想的方法应考虑DNA序列、组蛋白修饰和染色质重塑等影响核小体定位的诸多因素,然而现实中,捕捉主要因素的模型也往往具有很高的鲁棒性和实用价值。DNA序列偏好性是在全基因组尺度上影响核小体定位的最重要因素之一,因此基于DNA序列的核小体定位预测方法也最常见。这种方法可大致分为两类,即基于DNA序列信息的生物信息学模型和基于DNA变形能的生物物理学模型。本文重点介绍生物物理学模型近些年取得的主要进展。  相似文献   

6.
7.
染色质重塑复合体(chromatin remodeling complexes)通过具有ATPase活性的亚基水解ATP释放能量,通过改变核小体"构象"(包括核小体重定位、核小体滑动和核小体替换等)而改变DNA的"可及性"(accessibility),进而影响特定的生理、生化过程。染色质重塑复合体最早在酵母中发现,生化分析表明其至少含有13个亚基。目前植物染色质重塑复合体的组成还未完全解析,但通过对其酵母同源亚基(染色质重塑因子)的研究可从侧面探究植物染色质重塑复合体的功能。同时,还着重讨论了近年来在植物染色质重塑因子研究上取得的结果,以期为植物染色质重塑的作用机制提供启示。  相似文献   

8.
Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.  相似文献   

9.
The biological functions played by the nucleus of eukaryotic cells and especially those involved in cellular differentiation not only depend on the genomic sequence but also on all the proteins which form the nucleo-protein complex named chromatin. The tridimensional organization of this huge polymer involves many structural levels, the most basic one being the nucleosome. Nucleosomes further organize into the so-called 30nm fiber, which, according to recent works, is likely to be the main functional level of chromatin. We wish here to propose a plausible structure for the 30nm chromatin fiber that could explain its functional role. In our model, silenced chromatin is locked by nucleosome stacking interactions. This is achieved by a conformational transition within the nucleosome core particle (NCP) which allows nucleosomes to stack along two helices without bending the DNA linkers. We used molecular modeling to check that this conformational transition was plausible. Then we proposed to modify the well-known two-angle model according to these atomic level results. The emerging picture is an allosteric behavior of the nucleosomes induced by their collective organization within the 30nm chromatin fiber.  相似文献   

10.
ATP-dependent chromatin remodeling is one of the central processes responsible for imparting fluidity to chromatin and thus regulating DNA transactions. Although knowledge on this process is accumulating rapidly, the basic mechanism (or mechanisms) by which the remodeling complexes alter the structure of a nucleosome is not yet understood. Structural information on these macromolecular machines should aid in interpreting the biochemical and genetic data; to this end, we have determined the structure of the human PBAF ATP-dependent chromatin-remodeling complex preserved in negative stain by electron microscopy and have mapped the nucleosome binding site using two-dimensional (2D) image analysis. PBAF has an overall C-shaped architecture--with a larger density to which two smaller knobs are attached--surrounding a central cavity; one of these knobs appears to be flexible and occupies different positions in each of the structures determined. The 2D analysis of PBAF:nucleosome complexes indicates that the nucleosome binds in the central cavity.  相似文献   

11.
To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs) that are occupied by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome repositioning was observed much more prominently in GC-rich LNFRs — a considerable proportion of them outside promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-genome scale.  相似文献   

12.
13.
14.
Packaging of the DNA in nucleosomes restricts its accessibility to regulatory factors and enzymatic complexes, making a local remodeling of the nucleosome structure a prerequisite to the establishment of protein-DNA interactions. The use of an experimental system in which one nucleosome is reconstituted on a short linear DNA fragment allows gel fractionation of nucleosomes according to their translational positions, whose locations are dependent on the underlying DNA sequence. Nucleosome mobilization by chromatin remodeling factors is easily detected by observing band disappearance in gel, which in turn provides evidence for histone octamer displacement. Here, we provide methods for chromatin assembly that we have been using in our analysis for nucleosome mobilization by chromatin remodeling factors. These methods are straightforward and easy to follow. Thus, they may provide a good starting assay system for analysis of nucleosome movements by other chromatin remodeling machines.  相似文献   

15.
C Logie  C L Peterson 《The EMBO journal》1997,16(22):6772-6782
A novel, quantitative nucleosome array assay has been developed that couples the activity of a nucleosome 'remodeling' activity to restriction endonuclease activity. This assay has been used to determine the kinetic parameters of ATP-dependent nucleosome disruption by the yeast SWI/SNF complex. Our results support a catalytic mode of action for SWI/SNF in the absence of nucleosome targeting. In this quantitative assay SWI/SNF and ATP lead to a 100-fold increase in nucleosomal DNA accessibility, and initial rate measurements indicate that the complex can remodel one nucleosome every 4.5 min on an 11mer nucleosome array. In contrast to SWI/SNF action on mononucleosomes, we find that the SWI/SNF remodeling reaction on a nucleosome array is a highly reversible process. This result suggests that recovery from SWI/SNF action involves interactions among nucleosomes. The biophysical properties of model nucleosome arrays, coupled with the ease with which homogeneous arrays can be reconstituted and the DNA accessibility analyzed, makes the described array system generally applicable for functional analysis of other nucleosome remodeling enzymes, including histone acetyltransferases.  相似文献   

16.
ATP-dependent chromatin remodeling activities function to manipulate chromatin structure during gene regulation. One of the ways in which they do this is by altering the positions of nucleosomes along DNA. Here we provide support for the ability of these complexes to move nucleosomes into positions in which DNA is unraveled from one edge. This is expected to result in the loss of histone-DNA contacts that are important for retention of one H2A/H2B dimer within the nucleosome. Consistent with this we find that several chromatin remodeling complexes are capable of catalyzing the exchange of H2A/H2B dimers between chromatin fragments in an ATP-dependent reaction. This provides eukaryotes with additional means by which they may manipulate chromatin structure.  相似文献   

17.
18.
Eukaryotes have evolved a specific strategy to package DNA. The nucleosome is a 147-base-pair DNA segment wrapped around histone core proteins that plays important roles regulating DNA-dependent biosynthesis and gene expression. Chromatin remodeling complexes (RSC, Remodel the Structure of Chromatin) hydrolyze ATP to perturb DNA-histone contacts, leading to nucleosome sliding and ejection. Here, we utilized tethered particle motion (TPM) experiments to investigate the mechanism of RSC-mediated nucleosome remodeling in detail. We observed ATP-dependent RSC-mediated DNA looping and nucleosome ejection along individual mononucleosomes and dinucleosomes. We found that nucleosome assembly protein 1 (Nap1) enhanced RSC-mediated nucleosome ejection in a two-step disassembly manner from dinucleosomes but not from mononucleosomes. Based on this work, we provide an entire reaction scheme for the RSC-mediated nucleosome remodeling process that includes DNA looping, nucleosome ejection, the influence of adjacent nucleosomes, and the coordinated action between Nap1 and RSC.  相似文献   

19.
Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.  相似文献   

20.
Nucleosomes are no longer considered only static basic units that package eukaryotic DNA but they emerge as dynamic players in all chromosomal processes. Regulatory proteins can gain access to recognition sequences hidden by the histone octamer through the action of ATP-dependent chromatin remodeling complexes that cause nucleosome sliding. In addition, it is known that nucleosomes are able to spontaneously reposition along the DNA due to intrinsic dynamic properties, but it is not clear yet to what extent sequence-dependent dynamic properties contribute to nucleosome repositioning. Here, we study mobility of nucleosomes formed on telomeric sequences as a function of temperature and ionic strength. We find that telomeric nucleosomes are highly intrinsically mobile under physiological conditions, whereas nucleosomes formed on an average DNA sequence mostly remain in the initial position. This indicates that DNA sequence affects not only the thermodynamic stability and the positioning of nucleosomes but also their dynamic properties. Moreover, our findings suggest that the high mobility of telomeric nucleosomes may be relevant to the dynamics of telomeric chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号