首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of mannose 6-phosphate-specific receptors with their ligands has been suggested to be essential for natural killer cell (NK)-mediated cytotoxicity. Indeed, mannose 6-phosphate-specific receptors and ligands bearing mannose 6-phosphate residues are demonstrable on human peripheral blood leukocytes with NK activity as well as on K-562 NK target cells, allowing at least in principle such an interaction. It can also be shown that NK activity of human peripheral blood leukocytes is inhibited by mannose 6-phosphate. The following observations, however, exclude an essential role of the mannose 6-phosphate receptor-ligand system in NK cell-mediated cytotoxicity. 1) NK cytotoxicity is sensitive to a broad range of structurally unrelated sugar phosphates. 2) NK activity is normal in patients with I cell disease (mucolipidosis II), which due to a genetic defect are unable to synthesize the ligands for the mannose 6-phosphate-specific receptor. 3) NK cytotoxicity is not inhibited by an antiserum against the mannose 6-phosphate receptor, which blocks the receptor function.  相似文献   

2.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

3.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

4.
Mannose 6-phosphate receptors (MPRs) play an important role in the targeting of newly synthesized soluble acid hydrolases to the lysosome in higher eukaryotic cells. These acid hydrolases carry mannose 6-phosphate recognition markers on their N-linked oligosaccharides that are recognized by two distinct MPRs: the cation-dependent mannose 6-phosphate receptor and the insulin-like growth factor II/cation-independent mannose 6-phosphate receptor. Although much has been learned about the MPRs, it is unclear how these receptors interact with the highly diverse population of lysosomal enzymes. It is known that the terminal mannose 6-phosphate is essential for receptor binding. However, the results from several studies using synthetic oligosaccharides indicate that the binding site encompasses at least two sugars of the oligosaccharide. We now report the structure of the soluble extracytoplasmic domain of a glycosylation-deficient form of the bovine cation-dependent mannose 6-phosphate receptor complexed to pentamannosyl phosphate. This construct consists of the amino-terminal 154 amino acids (excluding the signal sequence) with glutamine substituted for asparagine at positions 31, 57, 68, and 87. The binding site of the receptor encompasses the phosphate group plus three of the five mannose rings of pentamannosyl phosphate. Receptor specificity for mannose arises from protein contacts with the 2-hydroxyl on the terminal mannose ring adjacent to the phosphate group. Glycosidic linkage preference originates from the minimization of unfavorable interactions between the ligand and receptor.  相似文献   

5.
P-type lectins   总被引:1,自引:0,他引:1  
The two members of the P-type lectin family, the cation-dependent mannose 6-phosphate receptor (CD-MPR) and the insulin-like growth factor II/mannose 6-phosphate receptor (IGF-II/MPR), are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The P-type lectins play an essential role in the generation of functional lysosomes within the cells of higher eukaryotes by directing newly synthesized lysosomal enzymes bearing the mannose 6-phosphate (M6P) signal to lysosomes. At the cell surface, the IGF-II/MPR also binds to the nonglycosylated polypeptide hormone, IGF-II, targeting this potent mitogenic factor for degradation in lysosomes. Moreover, in recent years, the multifunctional nature of the IGF-II/MPR has become increasingly apparent, as the list of extracellular ligands recognized by this receptor has grown to include a diverse spectrum of M6P-containing proteins as well as nonglycosylated ligands, implicating a role for the IGF-II/MPR in a number of important physiological pathways. Recent investigations have provided valuable insights into the molecular basis of ligand recognition by the MPRs as well as the complex intracellular trafficking pathways traversed by these receptors. This review provides a current view on the structures, functions, and medical relevance of the P-type lectins.  相似文献   

6.
The chemical modification of histidine and arginine residues results in a loss of binding of the Mr 46,000 mannose 6-phosphate receptor (MPR 46) to a phosphomannan affinity matrix (Stein, M., Meyer, J. E., Hasilik, A., and von Figura, K. (1987) Biol. Chem. Hoppe-Seyler 368, 927-936). Reversal of the modification or presence of mannose 6-phosphate during the modification partially restores or protects the binding activity, indicating that histidine and arginine residues contribute to the mannose 6-phosphate binding site. The 5 histidine and 8 arginine residues within the luminal domain of MPR 46, which contains the ligand binding site, were exchanged by site-directed mutagenesis. Only the conservative replacement of His-131 and Arg-137 by serine and lysine, respectively, results in a loss of binding activity without affecting other properties of the receptor such as the presence of intramolecular disulfide bonds, immunoreactivity, processing of N-linked oligosaccharides, formation of dimers, intracellular distribution, and surface expression. Conservative replacement of other histidine and arginine residues did not affect the binding activity. Nonconservative replacement of several arginine residues reduced binding activity and immunoreactivity, indicating that the loss of a positive charge at these positions alters the folding of MPR 46. We conclude from these results that His-131 and Arg-137 are essential for binding of ligands by MPR 46.  相似文献   

7.
The insulin-like growth factor II/mannose 6-phosphate receptor is a multifunctional receptor that binds to a diverse array of mannose 6-phosphate (Man-6-P) modified proteins as well as nonglycosylated ligands. Previous studies have mapped its two Man-6-P binding sites to a minimum of three domains, 1-3 and 7-9, within its 15-domain extracytoplasmic region. Since the primary amino acid determinants of carbohydrate recognition by the insulin-like growth factor II/mannose 6-phosphate receptor are predicted by sequence alignment to the cation-dependent mannose 6-phosphate receptor to reside within domains 3 and 9, constructs encoding either domain 3 alone or domain 9 alone were expressed in a Pichia pastoris expression system and tested for their ability to bind several carbohydrate ligands, including Man-6-P, pentamannosyl phosphate, the lysosomal enzyme, beta-glucuronidase, and the carbohydrate modifications (mannose 6-sulfate and Man-6-P methyl ester) found on Dictyostelium discoideum lysosomal enzymes. Although both constructs were functional in ligand binding and dissociation, these studies demonstrate the ability of domain 9 alone to fold into a high affinity (K(d) = 0.3 +/- 0.1 nm) carbohydrate-recognition domain whereas the domain 3 alone construct is capable of only low affinity binding (K(d) approximately 500 nm) toward beta-glucuronidase, suggesting that residues in adjacent domains (domains 1 and/or 2) are important, either directly or indirectly, for optimal binding by domain 3.  相似文献   

8.
Olson LJ  Yammani RD  Dahms NM  Kim JJ 《The EMBO journal》2004,23(10):2019-2028
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) mediates the intracellular transport of newly synthesized lysosomal enzymes containing mannose 6-phosphate on their N-linked oligosaccharides. In addition to its role in lysosome biogenesis, the CI-MPR interacts with a number of different extracellular ligands at the cell surface, including latent transforming growth factor-beta, insulin-like growth factor-II, plasminogen, and urokinase-type plasminogen activator receptor (uPAR), to regulate cell growth and motility. We have solved the crystal structure of the N-terminal 432 residues of the CI-MPR at 1.8 A resolution, which encompass three out of the 15 repetitive domains of its extracytoplasmic region. The three domains, which exhibit similar topology to each other and to the 46 kDa cation-dependent mannose 6-phosphate receptor, assemble into a compact structure with the uPAR/plasminogen and the carbohydrate-binding sites situated on opposite faces of the molecule. Knowledge of the arrangement of these three domains has allowed us to propose a model of the entire extracytoplasmic region of the CI-MPR that provides a context with which to envision the numerous binding interactions carried out by this multi-faceted receptor.  相似文献   

9.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

10.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

11.
Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes.   总被引:13,自引:2,他引:11       下载免费PDF全文
BHK and mouse L cells transfected with the cDNA for the human 46 kd mannose 6-phosphate receptor (MPR 46) secrete excessive amounts of newly synthesized mannose 6-phosphate containing polypeptides. The secretion is dependent on the amount, the recycling and the affinity for ligands of MPR 46. Incubation of transfected cells with antibodies blocking the binding site of MPR 46 reduces the secretion, and cotransfection with the cDNA for the human 300 kd mannose 6-phosphate (MPR 300) restores it to normal values. These results indicate that the two mannose 6-phosphate receptors compete for binding of newly synthesized ligands. In contrast to ligands bound to MPR 300, those bound to the MPR 46 are transported to and released at a site, e.g. early endosomes or plasma membrane, from where they can exit into the medium. Since antibodies blocking the binding site of MPR 46 reduce secretion also in non-transfected BHK and mouse L cells, at least part of the basal secretion of M6P-containing polypeptides is mediated by the endogenous MPR 46.  相似文献   

12.
The gene for insulin-like growth factor II (IGF-II) receptor (IGF2R) that has recently been found, by DNA sequencing, to be identical to the cation-independent mannose 6-phosphate receptor (CIM6PR) has been mapped in the human and murine species. Cloned cDNAs for human and rat IGF-II receptors were used to probe Southern blots of somatic cell hybrid DNA and for in situ chromosomal hybridization. The genes are located in a region of other conserved syntenic genes on the long arm of human chromosome 6, region 6q25----q27, and mouse chromosome 17, region A-C. The CIM6PR/IGF2R locus in man is asyntenic with the genes encoding IGF-II (IGF2), the IGF-I receptor (IGF1R), and the cation-dependent mannose 6-phosphate receptor (CDM6PR).  相似文献   

13.
Mannose 6-phosphate-specific receptors with an apparent molecular mass of 215,000 are present in fibroblasts at the cell surface and in intracellular membranes. The cell surface receptors mediate endocytosis of exogenous lysosomal enzymes and exchange with the intracellular receptors, which function in the sorting of endogenous lysosomal enzymes. In the present study, several methods independent of receptor ligands were designed in order to examine the exchange of receptors under conditions where receptor-ligand complexes do not dissociate (weak bases and monensin) or where receptor-ligand complexes are not formed due to absence of endogenous ligands as a result of inhibition of protein synthesis. Weak bases and monensin reduce the concentration of receptors at the cell surface by 20-30% and free cell surface receptors were replaced by occupied receptors. The latter continued to be exchanged with internal ligand-occupied receptors and the rates of the exchange were similar to the control values. The exchange of receptors between the cell surface and internal membranes was also not affected when the receptor ligands were depleted from the transport compartments by treating the cells with cycloheximide for up to 10 h. We conclude from these results that movement of mannose 6-phosphate-specific receptors along the endocytosis and sorting pathways is constitutive and not triggered by binding or dissociation of ligands.  相似文献   

14.
Mannose 6-phosphate receptors (MPRs) deliver soluble acid hydrolases to the lysosome in higher eukaryotic cells. The two MPRs, the cation-dependent MPR (CD-MPR) and the insulin-like growth factor II/cation-independent MPR, carry out this process by binding with high affinity to mannose 6-phosphate residues found on the N-linked oligosaccharides of their ligands. To elucidate the key amino acids involved in conveying this carbohydrate specificity, site-directed mutagenesis studies were conducted on the extracytoplasmic domain of the bovine CD-MPR. Single amino acid substitutions of the residues that form the binding pocket were generated, and the mutant constructs were expressed in transiently transfected COS-1 cells. Following metabolic labeling, mutant CD-MPRs were tested for their ability to bind pentamannosyl phosphate-containing affinity columns. Of the eight amino acids mutated, four (Gln-66, Arg-111, Glu-133, and Tyr-143) were found to be essential for ligand binding. In addition, mutation of the single histidine residue, His-105, within the binding site diminished the binding of the receptor to ligand, but did not eliminate the ability of the CD-MPR to release ligand under acidic conditions.  相似文献   

15.
The amount of mannose 6-phosphate/IGF II receptors in fibroblasts from five I-cell patients was about 2-fold higher than in control fibroblasts. The elevated receptor concentration, which led to a higher binding and uptake of mannose 6-phosphate containing ligands and to a higher binding of IGF II resulted from an increased rate of synthesis, while the stability of the receptor was comparable to that in control fibroblasts. Control fibroblasts respond to mannose 6-phosphate, IGF I, IGF II and tumor promoting phorbol esters with a rapid redistribution of mannose 6-phosphate/IGF II receptors from internal membranes to the cell surface. In I-cell fibroblasts only a moderate increase in cell surface receptors was seen after exposure to these effectors. In contrast to control fibroblasts the treatment of I-cell fibroblasts with lysosomotropic amines failed to affect the mannose 6-phosphate containing ligand binding to the receptor. These data provide evidence for multiple potential regulatory sites in intracellular mannose 6-phosphate/IGF II receptor pathway which differ in control and I-cell fibroblasts.  相似文献   

16.
The determinants on the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) required for lysosomal enzyme sorting have been analyzed. Mouse L cells deficient in the mannose 6-phosphate/insulin-like growth factor-II receptor were transfected with normal bovine CD-MPR cDNA or cDNAs containing mutations in the 67-amino acid cytoplasmic tail and assayed for their ability to target the lysosomal enzyme cathepsin D to lysosomes. Cells expressing the wild-type bovine CD-MPR sorted 67 +/- 2% of newly synthesized cathepsin D compared with the base-line value of 47 +/- 1%. The presence of mannose 6-phosphate in the medium did not affect the efficiency of cathepsin D sorting, indicating that the routing of the ligand-receptor complex is completely intracellular. Mutant receptors with the carboxyl-terminal His-Leu-Leu-Pro-Met67 residues deleted or replaced with alanines sorted cathepsin D below the base-line value. A mutant receptor with the outermost Pro-Met residues replaced with alanines sorted cathepsin D better than the wild-type receptor, indicating that the essential residues for sorting are the His-Leu-Leu sequence. Disruption of a putative casein kinase II phosphorylation site at Ser57 had no detectable effect on sorting. The mutant receptor with the five-amino acid deletion was able to bind to a phosphopentamannose affinity column, proving that its ligand binding site was grossly intact. Resialylation experiments showed that this mutant receptor recycled from the cell surface to the Golgi at a rate similar to the normal CD-MPR, indicating that the defect in sorting is at the level of the Golgi.  相似文献   

17.
Treatment of the lysosomal enzyme, α-L-iduronidase, with 2,3 butanedione, an arginine modifying reagent, under conditions where enzyme activity was unaffected, reduced by 50% the internalization of the enzyme into cultured human fibroblasts. The lowered rate of internalization was a result of a reduced binding of the enzyme to cell surface receptors. The butanedione treatment of α-L-iduronidase caused a 90% reduction of binding when isolated fibroblast membranes were used as the source of receptor. This marked reduction of binding was also seen when membranes from a rat chondrosarcoma were examined. Although there is ample evidence that the receptor recognizes mannose 6-phosphate residues on the enzyme, the results suggest that other structural features, such as arginine moieties, may also be important in iduronidase binding.  相似文献   

18.
In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells.  相似文献   

19.
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR.  相似文献   

20.
TIP47 (tail-interacting protein of 47 kDa) binds to the cytoplasmic domains of the cation-independent and cation-dependent mannose 6-phosphate receptors and is required for their transport from late endosomes to the trans Golgi network in vitro and in vivo. We report here a quantitative analysis of the interaction of recombinant TIP47 with mannose 6-phosphate receptor cytoplasmic domains. Recombinant TIP47 binds more tightly to the cation-independent mannose 6-phosphate receptor (K(D) = 1 microm) than to the cation-dependent mannose 6-phosphate receptor (K(D) = 3 microm). In addition, TIP47 fails to interact with the cytoplasmic domains of the hormone-processing enzymes, furin, phosphorylated furin, and metallocarboxypeptidase D, as well as the cytoplasmic domain of TGN38, proteins that are also transported from endosomes to the trans Golgi network. Although these proteins failed to bind TIP47, furin and TGN38 were readily recognized by the clathrin adaptor, AP-2. These data suggest that TIP47 recognizes a very select set of cargo molecules. Moreover, our data suggest unexpectedly that furin, TGN38, and carboxypeptidase D may use a distinct vesicular carrier and perhaps a distinct route for transport between endosomes and the trans Golgi network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号