首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventilatory response to high-frequency airway oscillation in humans   总被引:1,自引:0,他引:1  
To investigate respiratory control during high-frequency oscillation (HFO), ventilation was monitored in conscious humans by respiratory inductive plethysmography during application at the mouth of high-frequency pressure oscillations. Studies were conducted before and after airway and pharyngeal anesthesia. During HFO, breathing became slow and deep with an increase in tidal volume (VT) of 37% (P less than 0.01) and inspiratory duration (TI) of 34% (P less than 0.01). Timing ratio (TI/TT) increased 14% (P less than 0.05) and respiratory frequency (f) decreased 12% (P less than 0.01). Mean inspiratory flow (VT/TI) did not change during HFO. Following airway anesthesia, VT increased only 26% during HFO (P less than 0.01), whereas significant changes in TI, TI/TT, and f were not observed. Pharyngeal anesthesia failed to diminish the effect of HFO on TI, TT, or f, although the increase in VT was reduced. These results indicate that 1) HFO presented in this manner alters inspiratory timing without affecting the level of inspiratory activity, and 2) receptors in the larynx and/or lower airways may in part mediate the response.  相似文献   

2.
3.
4.
5.
6.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

7.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

8.
We previously demonstrated that, in awake goats, 6 h of hypoxic carotid body perfusion during systemic normoxia produced time-dependent hyperventilation that is typical of ventilatory acclimatization to hypoxia (VAH). The hypocapnic alkalosis that occurred could have produced VAH by inducing cerebral vasoconstriction and brain lactic acidosis even though systemic arterial normoxia was maintained. In the present study we tested the hypothesis that hypocapnic alkalosis is a necessary component of VAH. Goats were prepared so that one carotid body could be perfused, from an extracorporeal circuit, with blood in which gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Using this preparation we carried out 4 h of hypoxic carotid body perfusion while maintaining systemic arterial (and brain) normoxia in awake goats. Expired minute ventilation (VE) was measured while CO2 was added to inspired air to maintain normocapnia. Carotid body PCO2 and PO2 were maintained near 40 Torr during the 4-h carotid body perfusion. Control mean VE was 8.65 +/- 0.48 l/min (mean +/- SE). With acute carotid body hypoxia (30 min) VE increased to 21.73 +/- 2.02 l/min (P less than 0.05); over the ensuing 3.5 h of carotid body hypoxia, VE progressively increased to 39.14 +/- 4.14 l/min (P less than 0.05). These data indicate that neither cerebral hypoxia nor hypocapnic alkalosis are required to produce VAH. After termination of the 4-h carotid body stimulation, hyperventilation was not maintained in these studies, i.e., there was no deacclimatization. This suggests that acclimatization and deacclimatization are produced by different mechanisms.  相似文献   

9.
Normal alveolar ventilation tends to be maintained during external mechanical loading. The precise manner by which this occurs is unclear but may involve intrinsic mechanisms related to the muscular pump, neural influences, and chemoreceptor control. Recent observations suggest that submaximal threshold loads may result in hyperventilation. In this study we explicitly examined the respiratory effects of sustained threshold loading in normal subjects. We found that sustained threshold loading resulted in hyperventilation associated with high P100's (mouth pressure 100 ms after the start of an occluded breath) and increased tidal volumes but with little effect on duty cycle or respiratory rate. In addition, this increased respiratory motor output was sustained for 30-60 s after the load was removed. At very high threshold loads, hyperventilation failed to occur, despite increased P100's. We conclude that threshold loading results in increased respiratory motor output and hyperventilation, a response that is different from that observed with either resistive or elastic loads, and that the failure to hyperventilate at the higher loads may be the result of mechanical limitation.  相似文献   

10.
A system suitable for prolonged continuous in vivo measurement of human arterial PO2 is described. The system uses a polarographic electrode developed by Kimmich and Kreuzer, inserted in a specially made shunt between the radial artery and an antecubital vein. Nhe electrode surface is maintained in a fixed position parallel to the flow of blood; blood velocity dependency is small owing to the high flow rate achieved (more than 40 cm/s); clotting is prevented by the material used and the continuous instillation of heparin through the arterial end of the shunt. The system has been tested in vitro; it is stable (variation less than 0.5% in 24 h), linear and precise (plus or minus 0.2%) in a broad range of PO2 values (from about 10 mmHg to more than 700 mmHg); its response time is 0.4 s per 95% of deflection. It has been applied to 35 patients for periods ranging between 6 and 24 h; most of the patients were ventilated by an Engstrom respirator.  相似文献   

11.
12.
13.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

14.
A CO2 rebreathing technique was used to assess possible changes in the ventilatory response to CO2 in rats following a 14-week swim training program. Over the final 9 weeks, the rats swam 1 hr per day with a weight of 2.5% of the body weight attached to the tail. Ventilation was measured by a barometric method in awake, restrained rats in a total body plethysmography at CO2 concentrations of 0, 2, 4, 6, and 8%, with an initial O2 concentration of approximately 100%. Ventilation increased in the trained rats with increasing CO2 from 775ml . min-1 . kg-1 at 0% CO2 to 1,387 ml . min-1 . kg-1 at 8% CO2. This increase was a consequence of a 34% increase in tidal volume and a 32% increase in breathing frequency. In comparison with a group of sedentary control rats, there was a significantly higher ventilation and tidal volume at 0% CO2; however, this difference disappeared with increasing levels of CO2. A significantly lower resting heart rate was observed in the exercised (296 +/- 44 beats . min-1, mean +/- SD) compared to the sedentary control rats 380 +/- 42). It was concluded that, while the normal training response of resting bradycardia was observed following this duration and intensity of training, endurance swimming had no significant effect on the ventilatory response to CO2 in the rat.  相似文献   

15.
16.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

17.
18.
Ventilatory response to drug-induced hypermetabolism   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号