首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Osteoporosis and vasculopathy are common after organ transplantation and have been largely attributed to the use of immunosuppressants. Osteoprotegerin (OPG) is produced by osteoblastic and arterial cells, and inhibits osteoclast functions by neutralizing receptor activator of NF-kappaB ligand (RANKL). Because OPG-deficient mice develop osteoporosis and arterial calcification, we assessed the effects of immunosuppressants on OPG and RANKL expression by human osteoblastic and coronary artery smooth muscle cells (CASMC). Cyclosporine A, rapamycin, and FK-506 decreased OPG mRNA and protein levels in undifferentiated marrow stromal cells (by 63, 44, and 68%, respectively, P < 0.001). All three immunosuppressants increased RANKL mRNA levels in these cells by 60 to 210%. In contrast to these effects on marrow stromal cells, rapamycin, which may be relatively bone-sparing, increased OPG mRNA and protein production (by 120%, P < 0.001) in mature osteoblastic cells. Cyclosporine A also decreased OPG mRNA and protein production (by 52%, P < 0.001) of CASMC. In conclusion, immunosuppressants decrease OPG mRNA and protein production and increase RANKL gene expression by marrow stromal cells, and cyclosporine suppresses OPG production in CASMC. These studies thus provide a potential mechanism for immunosuppressant-induced bone loss, and the propensity of cyclosporine A to cause vascular disease.  相似文献   

3.
4.
It has been established that reactive oxygen species (ROS) such as H2O2 or superoxide anion is involved in bone loss-related diseases by stimulating osteoclast differentiation and bone resorption and that receptor activator of NF-kappaB ligand (RANKL) is a critical osteoclastogenic factor expressed on stromal/osteoblastic cells. However, the roles of ROS in RANKL expression and signaling mechanisms through which ROS regulates RANKL genes are not known. Here we report that increased intracellular ROS levels by H2O2 or xanthine/xanthine oxidase-generated superoxide anion stimulated RANKL mRNA and protein expression in human osteoblast-like MG63 cell line and primary mouse bone marrow stromal cells and calvarial osteoblasts. Further analysis revealed that ROS promoted phosphorylation of cAMP response element-binding protein (CREB)/ATF2 and its binding to CRE-domain in the murine RANKL promoter region. Moreover, the results of protein kinase A (PKA) inhibitor KT5720 and CREB1 RNA interference transfection clearly showed that PKA-CREB signaling pathway was necessary for ROS stimulation of RANKL in mouse osteoblasts. In human MG63 cells, however, we found that ROS promoted heat shock factor 2 (HSF2) binding to heat shock element in human RANKL promoter region and that HSF2, but not PKA, was required for ROS up-regulation of RANKL as revealed by KT5720 and HSF2 RNA interference transfection. We also found that ROS stimulated phosphorylation of extracellular signal-regulated kinases (ERKs) and that PD98059, the inhibitor for ERKs suppressed ROS-induced RANKL expression either in mouse osteoblasts or in MG63 cells. These results demonstrate that ROS stimulates RANKL expression via ERKs and PKA-CREB pathway in mouse osteoblasts and via ERKs and HSF2 in human MG63 cells.  相似文献   

5.
6.
Osteoprotegerin (OPG) and osteoclast differentiation factor (ODF) are crucial regulators of osteoclastogenesis. To determine the biological role of interleukin (IL)-18 produced by stromal/osteoblastic cells in osteoclastogenesis, we examined the effects of IL-18 on the OPG and ODF mRNA levels in these cells. When bone marrow stromal ST2 cells, osteoblastic MC3T3-E1 cells, and mouse calvarial osteoblasts were stimulated with IL-18, the expression of OPG mRNA, but not ODF mRNA, was transiently increased, its expression reaching a maximal level at 3 h after the beginning of the culture. In accordance with this observation, all these cells expressed the mRNAs of two IL-18 receptor components and MyD88, an adapter molecule involved in IL-18 signaling. Moreover, in these cells, mitogen-activated protein kinase was phosphorylated after stimulation with IL-18. These results suggest that stromal/osteoblastic cells are IL-18-responsive cells and that IL-18 may inhibit osteoclastogenesis by up-regulating OPG expression, without stimulation of ODF production, in stromal/osteoblastic cells.  相似文献   

7.
Expression of the cytokine, receptor activator of NF-kappaB ligand (RANKL), is stimulated by both parathyroid hormone (PTH) and calcitriol in osteoblasts. Most studies have examined the effects on RANKL mRNA, and less information is available on the protein products. We have determined the effects of PTH, the adenylate cyclase stimulator forskolin, and calcitriol, alone and in combination, on endogenous RANKL protein expression in UMR-106 rat osteoblastic osteosarcoma cells by Western blotting and enzyme immunoassay (EIA). PTH and forskolin dose dependently increased a approximately 52 kDa band in whole cell lysates that was detected by both C- and N-terminal directed RANKL antibodies. Calcitriol treatment produced little or no expression of this approximately 52 kDa band, but markedly increased the expression of a approximately 32 kDa band that was only detected with an antibody directed to the N-terminus of RANKL. An EIA based on RANKL binding to OPG detected a large increase in RANKL expression following calcitriol treatment, and much smaller increases with PTH or forskolin. The combination of PTH and calcitriol or forskolin and calcitriol elicited effects similar to those of PTH and forskolin alone, as detected by both Western blotting and EIA. In contrast to the effects on protein, all agents increased RANKL mRNA expression, with the greatest effects seen with the co-treatments. The results indicate that PTH, likely through effects on cyclic AMP, has a different effect on RANKL processing than calcitriol. The approximately 52 and approximately 32 kDa RANKL products appear to interact differently with OPG, which could affect responses to the agents in target cells.  相似文献   

8.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

9.
Porphyromonas gingivalis is a Gram-negative anaerobe implicated in chronic periodontitis, a bacterial-induced inflammatory condition that causes destruction of the periodontal connective tissues and underlying alveolar bone. The receptor activator of nuclear factor-kappaB ligand (RANKL) is a cytokine that directly stimulates osteoclastogenesis and bone resorption, whereas its decoy receptor osteoprotegerin (OPG) blocks this action. This study aimed to investigate the effects of P. gingivalis culture supernatants on RANKL and OPG expression in W20-17 bone marrow stromal cells, and evaluate the involvement of its virulence factors, particularly gingipains and lipopolysaccharide. P. gingivalis up-regulated RANKL and down-regulated OPG mRNA expression and protein production. These effects were blocked by indomethacin, suggesting mediation by prostaglandins. Furthermore, P gingivalis induced the production of prostaglandin E(2). Heat-inactivation, or chemical inhibition of P. gingivalis gingipains did not affect RANKL and OPG regulation. However, lipopolysaccharide depletion by polymyxin B abolished RANKL induction, and partly rescued the suppression of OPG. In conclusion, P. gingivalis regulates the RANKL-OPG system via prostaglandin E(2) in bone marrow stromal cells, in a manner that favours osteoclastogenesis. A non-proteolytic and non-proteinaceous P. gingivalis component is involved in these events, most probably its lipopolysaccharide. This activity may contribute to the bone loss characteristic of periodontitis.  相似文献   

10.
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.  相似文献   

11.
The interaction between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation.Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen α1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The expression of bone formation markers was activated in the bone formation phase, followed by the stimulation of RANKL/OPG expression in the bone resorption phase, which confirmed that these molecules are key factors linking bone formation to resorption during bone remodeling.  相似文献   

12.
Bone is continuously remodeled through resorption by osteoclasts and the subsequent synthesis of the bone matrix by osteoblasts. Cell-to-cell contact between osteoblasts and osteoclast precursors is required for osteoclast formation. RANKL (receptor activator of nuclear factor-kappaB ligand) expressed on osteoblastic cell membranes stimulates osteoclastogenesis, while osteoprotegerin (OPG) secreted by osteoblasts inhibits osteoclastogenesis. Although polyunsaturated fatty acids (PUFAs) have been implicated in bone homeostasis, the effects thereof on OPG and RANKL secretion have not been investigated. MC3T3-E1 osteoblasts were exposed to the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA); furthermore, the bone-active hormone parathyroid hormone (PTH) and the effects thereof were tested on OPG and RANKL secretion. Prostaglandin E(2) (PGE(2)), a product of AA metabolism that was previously implicated in bone homeostasis, was included in the study. AA (5.0-20 microg/ml) inhibited OPG secretion by 25-30%, which was attenuated by pretreatment with the cyclooxygenase blocker indomethacin, suggesting that the inhibitory effect of AA on OPG could possibly be PGE(2)-mediated. MC3T3-E1 cells secreted very low basal levels of RANKL, but AA stimulated RANKL secretion, thereby decreasing the OPG/RANKL ratio. DHA suppressed OPG secretion to a smaller extent than AA. This could, however, be due to endogenous PGE(2) production. No RANKL could be detected after exposing the MC3T3-E1 cells to DHA. PTH did not affect OPG secretion, but stimulated RANKL secretion. This study demonstrates that AA and PTH reduce the OPG/RANKL ratio and may increase osteoclastogenesis. DHA, however, had no significant effect on OPG or RANKL in this model.  相似文献   

13.
We have studied the effects of the treatment with corticosterone (CORT), parathyroid hormone (PTH), or both (CORT + PTH), and of their withdrawal (CORT-rec and CORT + PTH-rec), on the osteoprotegerin (OPG) and receptor activator of nuclear factor-kB ligand (RANKL) localization and expression and on histomorphometric parameters in primary and secondary spongiosa of rat femur and tibia metaphyses. In the secondary spongiosa of the CORT group, the bone remodeling and the OPG/RANKL mRNA ratio decreased. In the PTH group, the bone turnover and the structural and connectivity indices increased, and the OPG/RANKL mRNA ratio fell; this ratio rose, however, in the primary spongiosa. In the CORT + PTH group, remodeling values intermediate between those of the CORT and PTH groups, were detected in the secondary spongiosa, where OPG and RANKL mRNA rose. Return towards control values was found in the recovery groups. The Cartilage Growth Plate Width was reduced in the CORT and CORT + PTH groups and returned to normal values in the recovery groups, while it was not affected by PTH. Independently of treatments, both OPG and RANKL mRNA and proteins were co-localized in the same cartilage and bone cells and in several bone marrow cells. In conclusion, the catabolic effects induced by CORT treatment occur together with an OPG fall and a RANKL rise. In the PTH group in which the bone turnover increase, the OPG and RANKL mRNA expressions differ in the primary and secondary spongiosa, confirming that the bone tissue in these sites can have different metabolic trends.  相似文献   

14.
It is well known that thyroid hormone excess causes bone loss. However, the precise mechanism of bone loss by thyroid hormone still remains unclear. When T(3) was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, T(3) (1 pM-100 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of indomethacin and IL-6 Ab. T(3) increased the expression of osteoprotegerin (OPG) messenger RNA (mRNA), but not of receptor activator of nuclear factor kappaB ligand (RANKL) in unfractionated bone cells, suggesting that the stimulatory effect of T(3) on osteoclast formation was not mediated by the RANKL/OPG system. We next examined the direct effect of T(3) on osteoclast precursors in the absence of osteoblasts, using hemopoietic blast cells derived from spleen cells. T(3) (1 pM-100 nM) dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors. OPG did not inhibit T(3)-induced osteoclast formation from osteoclast precursor cells. The polymerase chain reaction (PCR) product corresponding in size to the mouse T(3) receptor alpha1 cDNA was detected in osteoclast precursors from mouse hemopoietic blast cells as well as mouse heart and mouse osteoblastic cell line MC3T3-E1 cells, suggesting that T(3) directly stimulated osteoclast-like cell formation from osteoclast precursors in the absence of osteoblasts. Further, T(3) increased the expression of c-Fos mRNA at 15 min and 24 h and Fra-1 mRNA at 2 and 6 h in osteoclast precursors. Consistent with the increased expression of c-Fos mRNA observed by RT-PCR, the activation of c-Fos occurred in osteoclast precursor cells stimulated by T(3), while the activation of neither NF-kappaB nor MAPKs was observed by immunoblot analysis. Antisense oligodeoxynucleotides (as-ODN) complementary to c-Fos mRNA at 1 microM significantly inhibited T(3)-induced osteoclast-like cell formation from osteoclast precursors in the absence of stromal cells while sense-ODN did not affect T(3)-induced osteoclast-like cell formation. These results indicate that T(3) directly stimulates osteoclast differentiation at least in part by up-regulation of c-fos protein in osteoclast precursor cells.  相似文献   

15.

Background

Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs.

Methodology/Principal Findings

Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor α (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio.

Conclusions/Significance

These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism.  相似文献   

16.
12–RhoA signaling is a parathyroid hormone (PTH)‐stimulated pathway that mediates effects in bone and may influence genetic susceptibility to osteoporosis. To further elucidate effects of the pathway in osteoblasts, UMR‐106 osteoblastic cells were stably transfected with constitutively active (ca) Gα12 or caRhoA or dominant negative (dn) RhoA and co‐cultured with RAW 264.7 cells to determine effects on hormone‐stimulated osteoclastogenesis. Whereas PTH and calcitriol‐stimulated osteoclastogenesis in co‐cultures with UMR‐106 cells expressing pcDNA or dominant negative RhoA, the osteoclastogenic effects of PTH and calcitriol were significantly attenuated when the UMR‐106 cells expressed either caRhoA or caGα12. These inhibitory effects were partially reversed by the Rho kinase inhibitor Y27632. None of the constructs affected osteoclastogenesis in untreated co‐cultures, and the constructs did not inhibit the osteoclastogenic responses to receptor activator of NFκB ligand (RANKL). To investigate the mechanism of the inhibitory effects of caGα12 and caRhoA, expression of RANKL, osteoprotegerin (OPG), osteopontin (OPN), and intercellular adhesion molecule‐1 (ICAM) in response to PTH or calcitriol was examined in the UMR‐106 cells. In the cells expressing pcDNA or dnRhoA, PTH and calcitriol increased RANKL mRNA and decreased OPG mRNA, whereas these effects were absent in the cells expressing caGα12 or caRhoA. Basal expression of RANKL and OPG was unaffected by the constructs. The results suggest that Gα12–RhoA signaling can inhibit hormone‐stimulated osteoclastogenesis by effects on expression of RANKL and OPG. Since PTH can stimulate the Gα12–RhoA pathway, the current findings could represent a homeostatic mechanism for regulating osteoclastogenic action. J. Cell. Biochem. 111: 1531–1536, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Anti-diabetic drug metformin has been shown to enhance osteoblasts differentiation and inhibit osteoclast differentiation in vitro and prevent bone loss in ovariectomized (OVX) rats. But the mechanisms through which metformin regulates osteoclastogensis are not known. Osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) are cytokines predominantly secreted by osteoblasts and play critical roles in the differentiation and function of osteoclasts. In this study, we demonstrated that metformin dose-dependently stimulated OPG and reduced RANKL mRNA and protein expression in mouse calvarial osteoblasts and osteoblastic cell line MC3T3-E1. Inhibition of AMP-activated protein kinase (AMPK) and CaM kinase kinase (CaMKK), two targets of metformin, suppressed endogenous and metformin-induced OPG secretion in osteoblasts. Moreover, supernatant of osteoblasts treated with metformin reduced formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in Raw264.7 cells. Most importantly, metformin significantly increased total body bone mineral density, prevented bone loss and decreased TRAP-positive cells in OVX rats proximal tibiae, accompanied with an increase of OPG and decrease of RANKL expression. These in vivo and in vitro studies suggest that metformin reduces RANKL and stimulates OPG expression in osteoblasts, further inhibits osteoclast differentiation and prevents bone loss in OVX rats.  相似文献   

18.
The role that androgens play in the regulation of bone metabolism has been substantiated in animals and humans. We previously demonstrated that testosterone inhibits osteoclast differentiation stimulated by parathyroid hormone through the androgen receptor in mouse bone-cell cultures. However, the details of this mechanism are still unknown. The present study was aimed at examining whether testosterone would affect the mRNA levels of osteoprotegerin (OPG) and receptor activator of Nf kappa B ligand (RANKL) in mouse bone-cell cultures as well as mouse osteoblastic cell-line, MC3T3-E1 cells by employing semi-quantitative RT-PCR. Testosterone increased OPG mRNA expression in both mouse bone-cell cultures and MC3T3-E1 cells. 10-8 M PTH-(1-34) as well as 10-8M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibited OPG mRNA expression in mouse bone cells. 10-8 M testosterone antagonized OPG mRNA expression inhibited by 10-8 M PTH-(1-34), but failed to affect OPG mRNA expression inhibited by 10-8 M 1,25(OH)2D3. 10-8 M alpha-dehydrotestosterone, a non-aromatizable androgen, increased OPG mRNA expression. On the other hand, testosterone did not affect RANKL mRNA expression in MC3T3-E1 or mouse bone cells. In conclusion, the present study demonstrated that testosterone increased OPG mRNA expression in mouse bone-cell cultures and the osteoblastic cell line. These effects are likely to take place through the androgen receptor.  相似文献   

19.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号