首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.  相似文献   

2.
3.
DNA sequences closely homologous to argininosuccinate synthetase are present at ten or more distinct locations in the human genome, including sites on chromosomes 6,9 and X. Argininosuccinate synthetase thus represents one of the most widely dispersed multigene families described to date, the first instance of a multigene family associated with an enzyme of intermediary metabolism and, perhaps most striking, the first instance of a multigene family with members on both autosomes and sex chromosomes.  相似文献   

4.
5.
Chromosome identification using Chinese hamster ovary (CHO) genomic bacterial artificial chromosome (BAC) clones has the potential to contribute to the analysis and understanding of chromosomal instability of CHO cell lines and to improve our understanding of chromosome organization during the establishment of recombinant CHO cells. Fluorescence in situ hybridization imaging using BAC clones as probes (BAC-FISH) can provide valuable information for the identification of chromosomes. In this study, we identified chromosomes and analyzed the chromosome rearrangement in CHO cells using BAC-FISH methods.  相似文献   

6.
Architecture of the Chinese hamster metaphase chromosome   总被引:7,自引:1,他引:7  
The development of procedures for the isolation of unfixed metaphase chromosomes has made feasible a direct analysis of their morphology. Wholemount stereo electron microscopy was used to examine intact and partially disrupted chromosomes produced by physical shearing and extraction with salt and urea solutions. A model of chromosome architecture was developed to accommodate evidence from studies using both light and electron microscopy. In the proposed model the chromatid (anaphase chromosome) consists of two half-chromatids; each half-chromatid contains two deoxyribonucleoprotein ribbons wound into a single fiber (termed the core), with many loops of chromatin (termed epichromatin) attached along its length. The core ribbons are each about 50 Å thick by 4000 Å wide and are composed of many parallel deoxyribonucleoprotein strands. The epichromatin loops appear to be 250 Å supercoiled fibers containing about 75 per cent of the chromosomal DNA. The epichromatin can be selectively removed from the core fibers by extraction with 2.0 M NaCl or 6.0 M urea solutions.  相似文献   

7.
During local adaptation with gene flow, some regions of the genome are inherently more responsive to selection than others. Recent theory predicts that X‐linked genes should disproportionately contribute to local adaptation relative to other genomic regions, yet this prediction remains to be tested. We carried out a multigeneration crossing scheme, using two cline‐end populations of Drosophila melanogaster, to estimate the relative contributions of the X chromosome, autosomes, and mitochondrial genome to divergence in four traits involved in local adaptation (wing size, resistance to heat, desiccation, and starvation stresses). We found that the mitochondrial genome and autosomes contributed significantly to clinal divergence in three of the four traits. In contrast, the X made no significant contribution to divergence in these traits. Given the small size of the mitochondrial genome, our results indicate that it plays a surprisingly large role in clinal adaptation. In contrast, the X, which represents roughly 20% of the Drosophila genome, contributes negligibly—a pattern that conflicts with theoretical predictions. These patterns reinforce recent work implying a central role of mitochondria in climatic adaptation, and suggest that different genomic regions may play fundamentally different roles in processes of divergence with gene flow.  相似文献   

8.
The direction of chromosome loss in two sets of mouse-Chinese hamster hybrids was compared with the direction of segregation of the same hybrids, to which an additional X chromosome derived from either of the mouse sarcoma lines MethAa, MethAs, or CMS4, was introduced at the time of the fusion. The addition of the X chromosome was carried out by substituting in place of the Chinese hamster parent a mouse X containing microcell hybrid of the latter. It was found that the addition of an X chromosome reverses the direction of chromosome segregation, but it can do so only if the mouse parent in the hybridization is different from the line from which the X originated. The possible reasons for recognition by the cells of a native and a foreign X are discussed. The existence of a multigene family on the X chromosome, involved in this recognition, is proposed.  相似文献   

9.
Mobile elements constitute a considerable part of the eukaryotic genome. This work is focused on the distribution and evolution of DNA-transposons in the genomes of diploid and allopolyploid Triticeae species and their role in the formation of functionally important chromosomal subtelomeric regions. The Caspar family is among the most abundant of CACTA DNA-transposons in Triticeae. To study the evolution of Caspar-like elements in Triticeae genomes, we analyzed their sequences and distribution in chromosomes by in situ hybridization. In total, 46 Caspar-like elements from the wheat and barley Caspar, Clifford, and Donald families were analyzed after being extracted from databases using the transposase consensus sequence. Sequence alignment and subsequent phylogenetic analyses revealed that the transposase DNA sequences formed three major distinct groups: (1) Clifford, (2) Caspar_Triticinae, and (3) Caspar_Hordeinae. Additionally, in situ hybridization demonstrated that Caspar_Triticinae transposons are predominantly compartmentalized in the subtelomeric chromosomal regions of wheat and its progenitors. Analysis of data suggested that compartmentalization in the subtelomeric chromosomal region was a characteristic feature of all the main groups of Caspar-like elements. Furthermore, a dot plot analysis of the terminal repeats demonstrated that the divergence of these repeats strictly correlated with the divergence of Caspar coding sequences. A clear distinction in the Caspar DNA sequences among the species Triticum/Aegilops (Caspar_Triticinae), Hordeum (Caspar_Hordeinae), and different distributions in individual hexaploid wheat genomes (A/B and D) suggest an independent proliferation of these elements in wheat (or its progenitors) and barley genomes. Thus, Caspar-like transposons can significantly contribute to the formation and differentiation of subtelomeric regions in Triticeae species.  相似文献   

10.
We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.  相似文献   

11.

Background

Although the X chromosome is the second largest bovine chromosome, markers on the X chromosome are not used for genomic prediction in some countries and populations. In this study, we presented a method for computing genomic relationships using X chromosome markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP (single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction with and without using X chromosome markers.

Methods

The impact of considering X chromosome markers on prediction accuracy was assessed using data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic best linear unbiased prediction) models with or without X chromosome markers and with or without a residual polygenic effect were used to predict genomic breeding values for 15 traits.

Results

Averaged over the two imputation datasets, correlation coefficients between imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or Beagle were very close to those using the real 54K data. Genomic prediction using all markers gave slightly higher reliabilities than predictions without X chromosome markers. Based on our data which included only bulls, using a G matrix that accounted for sex-linked relationships did not improve prediction, compared with a G matrix that did not account for sex-linked relationships. A model that included a polygenic effect did not recover the loss of prediction accuracy from exclusion of X chromosome markers.

Conclusions

The results from this study suggest that markers on the X chromosome contribute to accuracy of genomic predictions and should be used for routine genomic evaluation.  相似文献   

12.
Chromosome aberrations (Cabs) can be induced in vitro by non-DNA damaging compounds, often associated with cytotoxicity and DNA synthesis inhibition, and under conditions that would not be relevant in vivo. Such misleading positive results are reported both in Chinese hamster cell lines and in human peripheral blood lymphocytes (HL). We assessed the response of HL to compounds with varied genetic toxicity profiles, all of which induced Cabs in CHO cells Seven of 10 compounds were negative or equivocal in HL. Results in purified lymphocytes for four verified that the difference was not due to the presence of blood in cultures. Two compounds that were weakly positive in the Ames test and one that induced DNA adducts were negative or equivocal in the HL assay; their overall mutagenic potential in vivo is not clear. Of four Ames-negative compounds, three of which inhibited DNA synthesis in CHO cells, three were negative and one was equivocal in the HL assay. A potent Cab inducer, which also induced micronuclei in vivo (but was negative in the Ames test) was clearly positive in the HL assay. Two compounds were clearly positive in HL only when the mitotic indices (MI) were below 50% of control. These are genotoxic in other assays but our evidence suggests that Cab induction is related more to toxicity than to primary DNA damage. For this limited set of 10 compounds, HL were more likely than CHO cells to give negative or equivocal results. It is likely that more stringent checkpoint controls in human cells prevent damaged cells reaching mitosis, and may also influence the reported greater sensitivity to induction of aneuploidy and polyploidy of normal rodent compared with human cells. In the studies reported here, two strong inducers of polyploidy in CHO cells gave weaker increases in HL. Human lymphocytes have disadvantages as a routine screening assay (finding donors, known individual variability, increased time required and the inadequacy of the MI as a toxicity measure), but may be useful in follow-up testing to assess weight of evidence about genotoxic risk to humans, for compounds that are positive in the Chinese hamster cell Cabs assays.  相似文献   

13.
Mammalian genome replication and maintenance are intimately coupled with the mechanisms that ensure cohesion between the resultant sister chromatids and the repair of DNA breaks. Although a sister chromatid exchange (SCE) is an error-free swapping of precisely matched and identical DNA strands, repetitive elements adjacent to the break site can act as alternative template sites and an unequal sister chromatid exchange can result, leading to structural variations and copy number change. Here we test the vulnerability for SCEs of the repeat-rich bovine Y chromosome in comparison with X, 16 and 26 chromosomes, using chromosome orientation-fluorescence in situ hybridization. The mean SCE rate of the Y chromosome (0.065 ± 0.029) was similar to that of BTA16 and BTA26 (0.065, 0.055), but was only approximately half of that of the X chromosome (0.142). As the chromosomal length affects the number of SCE events, we adjusted the SCE rates of the Y, 16, and 26 chromosomes to the length of the largest chromosome X resulting in very similar adjusted SCE (SCE(adj)) rates in all categories. Our results - based on 3 independent bulls - show that, although the cattle Y chromosome is a chest full of repeated elements, their presence and the documented activity of repeats in SCE formation does not manifest in significantly higher SCE(adj) rates and suggest the importance of the structural organization of the Y chromosome and the role of alternative mitotic DNA repair mechanisms.  相似文献   

14.
15.
Hybridization intensities of 30 distinct short duplex DNAs measured on spotted microarrays, were directly compared with thermodynamic stabilities measured in solution. DNA sequences were designed to promote formation of perfect match, or hybrid duplexes containing tandem mismatches. Thermodynamic parameters ΔH°, ΔS° and ΔG° of melting transitions in solution were evaluated directly using differential scanning calorimetry. Quantitative comparison with results from 63 multiplex microarray hybridization experiments provided a linear relationship for perfect match and most mismatch duplexes. Examination of outliers suggests that both duplex length and relative position of tandem mismatches could be important factors contributing to observed deviations from linearity. A detailed comparison of measured thermodynamic parameters with those calculated using the nearest-neighbor model was performed. Analysis revealed the nearest-neighbor model generally predicts mismatch duplexes to be less stable than experimentally observed. Results also show the relative stability of a tandem mismatch is highly dependent on the identity of the flanking Watson–Crick (w/c) base pairs. Thus, specifying the stability contribution of a tandem mismatch requires consideration of the sequence identity of at least four base pair units (tandem mismatch and flanking w/c base pairs). These observations underscore the need for rigorous evaluation of thermodynamic parameters describing tandem mismatch stability.  相似文献   

16.
Several recombinants were identified and purified from a cloned library of human DNA by virtue of their homology to DNA from a mouse-human hybrid cell line containing a single human chromosome, the X, and their lack of homology to mouse DNA. Three recombinants were characterized in detail, and all were homologous to reiterated DNA from the human X chromosome. These recombinants also were homologous to reiterated sequences on one or more human autosomes and, therefore, were not X chromosome specific. The recombinant DNA fragments homologous to human reiterated X DNA were the same fragments homologous to human reiterated autosomal DNA. Digestion of genomic DNAs with several restriction enzymes revealed that the pattern of fragments homologous to one recombinant, lambda Hb2, was the same on autosomes as on the X chromosome, suggesting that the molecular organization of these elements on the X is not distinct from their organization on autosomes.  相似文献   

17.
The hybridization kinetics for a series of designed 25mer probe–target pairs having varying degrees of secondary structure have been measured by UV absorbance and surface plasmon resonance (SPR) spectroscopy in solution and on the surface, respectively. Kinetic rate constants derived from the resultant data decrease with increasing probe and target secondary structure similarly in both solution and surface environments. Specifically, addition of three intramolecular base pairs in the probe and target structure slow hybridization by a factor of two. For individual strands containing four or more intramolecular base pairs, hybridization cannot be described by a traditional two-state model in solution-phase nor on the surface. Surface hybridization rates are also 20- to 40-fold slower than solution-phase rates for identical sequences and conditions. These quantitative findings may have implications for the design of better biosensors, particularly those using probes with deliberate secondary structure.  相似文献   

18.
The chromosomal location of the porcine gene for glucose phosphate isomerase (GPI) was previously mapped to 6p 12----6q21 in the pig karyotype. The replication patterns and morphology of this chromosome are very similar to those of chromosome 14 in the rabbit karyotype. With combined in situ hybridization and RBG-band induction it was demonstrated that the porcine GPI-probe hybridized most frequently to 14p11----14q12 in the rabbit karyotype, indicating a close relationship between morphology, replication pattern and gene location.  相似文献   

19.
Kim BS  Zhao B  Kim HJ  Cho M 《Mutation research》2000,469(2):243-252
The purpose of the in vitro chromosome aberration assay (ABS) is to determine whether the test compound is a clastogen, i.e. induces structural changes in chromosomes. Details of this assay can be found in Galloway et al. [S.M. Galloway, M. Aardema, M. Ishidate Jr, J.L. Ivett, D.J. Kirkland, M. Takeshi, P. Mosesso, T. Sofuni, Mutation Res. 312 (1994) 241-261]. The standard design consists of a negative control and at least three positive dose groups. At each dose, a sample, say 200, of metaphase cells is examined microscopically and cells exhibiting at least one type of chromosome aberration are identified. Using Chinese hamster ovary cells, Margolin et al. [B.H. Margolin, M.A. Resnick, J.Y. Rimpo, P. Archer, S.M. Galloway, A.D. Bloom, E. Zeiger, Environ. Mutagen. 8 (1986) 183-204] and Richardson et al. [C. Richardson, D.A. Williams, J.A. Allen, G. Amphlett, D.O. Chanter, B. Phillips, Analysis of data from in vitro cytogenetic assays, in: D.J. Kirkland (Ed.), Statistical Evaluation of Mutagenicity Test Data, Cambridge University Press, Cambridge, 1989, pp. 141-154] demonstrated that a binomial sampling model could be used to describe the proportion of cells with chromosome aberrations.Statisticians and toxicologists have also suggested evaluation criteria for the dose response pattern of ABS. Margolin et al. [B.H. Margolin, M.A. Resnick, J.Y. Rimpo, P. Archer, S.M. Galloway, A.D. Bloom, E. Zeiger, Environ. Mutagen. 8 (1986) 183-204] suggested one use the Cochran-Armitage trend test. Sofuni et al. [T. Sofuni, A. Matsuoka, M. Sawada, M. Ishidate Jr, E. Zeiger, M.D. Shelby, Mutation Res. 241 (1990) 175-213] considered the dose response to be (strong) positive if it had two significant doses out of three dose groups and decided it was weakly positive if it had only one significant dose and there was a significant trend. The criterion of Galloway et al. for a positive response was a clear dose-related increase in cells with structural aberrations in one experiment or a reproducible single positive dose [S.M. Galloway, M. Aardema, M. Ishidate Jr, J.L. Ivett, D.J. Kirkland, M. Takeshi, P. Mosesso, T. Sofuni, Mutation Res. 312 (1994) 241-261].We formulate the above three procedures in terms of a Cochran-Armitage trend test and a Dunnett type test. We then compare the performance of these three procedures in terms of a Monte Carlo simulation study. We then develop a software program from the chosen procedure for its ease of use by statisticians and toxicologists.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号