首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution density of opioid receptors in the brain of El mice (seizure-susceptible strain) was examined to determine the relation between seizures and the opioid system. Saturation curves and Scatchard plots of [3H]2-d-alamine-5-d-leucine enkephalin binding revealed that the opioid delta receptor density in adult El mice during interictal periods was significantly increased in the cerebral cortex, hippocampus, and septal area. It was further shown that the concentration of such receptors in 25-day-old El mice that had no seizures was also significantly increased in the hippocampus and septal area, with no changes in apparent affinities, as compared with in the corresponding regions in ddY mice (seizure-nonsusceptible strain; the mother strain of El). Such up-regulation of opioid receptors in the El mouse brain could result from deficits in endogenous opioid peptides, which could be associated with the pathogenesis of seizure diathesis in the El mouse.  相似文献   

2.
Convulsions and brain levels of amino acids and 5-hydroxytryptamine (5-HT) in El mice were examined after oral administration of a 1% guanidinoethane sulfonate (GES) solution. The incidence of convulsions increased 3 days after starting GES administration, and this effect continued throughout the 6 months of drug administration. Glutamate levels were increased in the cerebrum, and glutamine levels were increased in the cerebellum three days after starting GES administration. Brain 5-HT levels were not changed at that time. These results suggest that increased seizure susceptibility induced by GES in mice is related to glutamatergic neurons.  相似文献   

3.
The aim of this study was to compare the changes in amino acids (alanine, aspartate, GABA, glutamate, glutamine, glycine, serine taurine) that are produced in different regions of the neonate brain (telencephalon, diencephalon cerebellum, brain stem) following a survivable period of anoxia and after the re-establishment of air respiration. Anoxia provoked different responses in the different regions. The changes during the anoxic period were as follows. In the brain stem there was a decrease in aspartate, in the telencephalon there was a significant increase in GABA and alanine and a decrease in aspartate, in the diencephalon, glutamate and GABA increased, and in the cerebellum, glycine and alanine levels were enhanced. The changes during recovery were even more dissimilar. Here the greatest shifts were seen in the brain stem with increases in glutamine, GABA, aspartate, glycine, serine, alanine, and taurine. In the telencephalon glutamate fell and alanine increased, in the diencephalon GABA increased, and in the cerebellum, glutamate fell while glycine and alanine increased. In none of the major brain regions did the pattern of changes in neurotransmitters correspond to that seen in anoxic tolerant species.  相似文献   

4.
Changes in free amino acids were examined in the central nervous system of mice treated with caffeine for three weeks. Caffeine was administered in the drinking water, and at the end of three weeks the level of caffeine in the cerebral cortex was 113±19 g/g. When amino acid levels in cerebral hemispheres, midbrain, pons and medulla, and cerebellum were measured a significant increase in glutamine levels was found in all four regions. Glycine, alanine, serine, threonine, and GABA were significantly reduced in some regions. Caffeine appears to alter some of the metabolic or transport processes regulating amino acid pools in the brain. The decrease of GABA found in pons and medulla may contribute to the observed increase in reflex excitability after caffeine.Special issue dedicated to Dr. Elling Kvamme  相似文献   

5.
We previously reported a deficit of methionine enkephalin-like immunoreactivity (ME-LI), in the cerebral cortex, septal area, hippocampus, and striatum and the abnormal metabolism of opioid peptides in the hippocampus and striatum of seizure-susceptible El mice, which are involved in the pathogenesis of seizures. However, these findings suggest that the ME-LI does not necessarily reflect the bioactive methionine enkephalin (ME). Herein, we measured the biologically active peptide, ME excluding cross-reactive substances by using HPLC coupled with radioimmunoassay to clarify the abnormal function of enkephalinergic neurons in the El mouse brain. The ME content in 25-day-old El mice that had no seizures was significantly decreased in the hippocampus and septal area, as compared with corresponding regions in ddY mice (seizure-nonsusceptible; the mother strain of El). At the age of 50 days when El mice displayed abortive seizures, this content in both stimulated El[s] and nonstimulated El[ns] was significantly reduced in the septal area and cerebral cortex. At the age of 150 days when El mice exhibit tonic-clonic seizures, this content in both El[s] and El[ns] was significantly reduced in the septal area, cerebral cortex and striatum. These findings were generally compatible with our previous findings. This study further supports our hypothesis that a deficit of anticonvulsant endogenous ME, in the cerebral cortex, septal area, and hippocampus of seizuresusceptible El mice play an important role in the pathogenesis of seizures.  相似文献   

6.

Objective

In the present study, the effect of stimulation of the Po-shen and Shen-hun scalp-acupuncture bands on tissue amino acid concentrations in several brain regions in awake and pentobarbital-sedated immature rats was evaluated.

Materials and methods

Sprague–Dawley rats (aged 15 days) were organized in four groups of at least eight animals: control groups received saline solution 0.9% or sodium pentobarbital at 30 mg/kg dosage via intraperitoneal. Experimental groups received saline solution or sodium pentobarbital plus stimulation in Po-shen and Shen-hun scalp-acupuncture bands for one continuous hour during 10 sessions by using scalp-acupuncture.

Results

As compared to rats receiving saline solution, scalp-acupuncture produced significant changes in amino acid concentrations, depending on the analyzed region, as follows: in inhibitory amino acids, a GABA increase was observed in amygdala and hippocampus (491 and 184%, respectively), but a decrease in the substantia nigra (80%); glycine showed decrease in all the analyzed regions, except for an increase in brainstem(78%); glutamine presented an increase in hippocampus and cortex (42 and 149%, respectively). In the case of excitatory amino acids, glutamate decreased in all the analyzed regions; whereas aspartate decreased in substantia nigra and brainstem (77.08 and 35%, correspondingly) but increased in hippocampus and cortex (32 and 54%, respectively). The combined treatment of scalp-acupuncture and a GABAergic depressant drug like pentobarbital resulted in almost all changes induced in amino acids for scalp-acupuncture alone being significantly reverted.

Conclusion

Stimulation of the Po-shen and Shen-hun scalp-acupuncture bands by using scalp-acupuncture alone might produce depressant activity by changes in amino acids, but the combination with a GABAergic tranquilizer like sodium pentobarbital can interfere with this response.  相似文献   

7.
8.
9.
In an attempt to elucidate the relationship between endogenous methionine-enkephalin (ME) and vasoactive intestinal polypeptide (VIP) with generalized seizures, we determined regional brain levels of ME-like and VIP-like immunoreactivity (ME-LI and VIP-LI) in El mice during and after seizures induced by repeated tossing stimulation. The levels of ME-LI in the striatum and hippocampus of seizure-naive El mice (El–) were lower than those of the control ddY mice, the mother strain of El mice. Conversely, the level of VIP-LI in the medulla oblongata and pons of El– was higher than that of ddY mice. The level of ME-LI in the striatum of seizure-experienced El mice (El+) killed 96 hours after three consecutive seizures was high, while levels of VIP-LI in the striatum and hypothalamus were low, in comparison to those of El– mice. A detailed time-course study revealed that seizures in El mice caused (1) significant decreases in levels of ME-LI in the striatum and hippocampus during seizures, (2) a significant decrease of VIP-LI content in the striatum 3 hours after seizures, and (3) a significant increase in hypothalamic VIP-LI 9 hours after seizures. These observations suggest that ME and VIP may play some role in El mouse seizures.  相似文献   

10.
In rat brain slices the synthesis of [3H]phosphoinositides and the production of [3H]inositol monophosphate (IP1) induced by norepinephrine (NE) were inhibited by glutamate. Calcium concentrations were varied to test if these inhibitory effects of glutamate were mediated by a calcium-dependent process. Although reducing calcium or addition of the calcium antagonist verpamil reduced the inhibitory effects of glutamate, these results were equivocal because reduced calcium directly decreased agonist-induced [3H]phosphoinositide synthesis. The inhibitory effects of glutamate were mimicked by quisqualate in a dose-dependent manner, but none of a variety of excitatory amino acid receptor antagonists modified the inhibition caused by quisqualate. It is suggested that glutamate activates a quisqualate-sensitive receptor (for which an antagonist is not available) and causes inhibition of phosphoinositide hydrolysis mediated in part by a direct or indirect inhibitory effect of calcium on phosphoinositide synthesis. Modulatory effects of arachidonic acid were examined because glutamate and calcium can activate phospholipase A2. Arachidonic acid caused a rapid and dose-dependent inhibition of [3H]phosphoinositide synthesis and of NE-stimulated [3H]IP1 production. A similar inhibition of the response to carbachol also occurred. The inhibition caused by arachidonic acid was unchanged by addition of inhibitors of cyclooxygenase or lipoxygenase. Activation of phospholipase A2 with melittin caused inhibitory effects similar to those of arachidonic acid. Inhibitors of phospholipase A2 were found to impair phosphoinositide metabolism, likely due to their lack of specificity for phospholipase A2. Further studies were carried out in slices that were prelabelled with [3H]inositol in an attempt to separate modulatory effects on [3H]phosphoinositide synthesis and agonist-stimulated [3H]IP1 production. Several excitatory amino acid agonists inhibited NE-stimulated [3H]IP1 production. This inhibitory inter-action could be due to impaired synthesis of [3H]phosphoinositides because, even though the slices were prelabeled, addition of unlabelled inositol reduced NE-stimulated [3H]IP1 production, indicating that continuous regeneration of [3H]phosphoinositides is required. In contrast to the inhibitory effects of the excitatory amino acids, gamma-aminobutyric acid (GABA) enhanced the response to NE in cortical and hippocampal slices. GABA also enhanced the response to carbachol in hippocampal and striatal slices and to ibotenic acid in hippocampal slices. Baclofen potentiated the response to NE similarly to the effect of GABA and baclofen partially blocked the inhibitory effect of arachidonic acid but did not alter that of quisqualate.Abbreviations AMPA -amino-3-hydroxy-5-methyl-4-isoxazolepropionic - acid AP4 dl-2-amino-4-phosphonobutyric acid - BPB bromphenacyl bromide - BSA bovine serum albumin - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - DFMO -difluoromethylornithine - DIDS diisothiocyanotostilbene-2,2-disulfonic acid - EGTA ethyleneglycol-bis-N - N, N N-tetraacetic acid - GABA -aminobutyric acid - GDEE glutamate diethyl ether - -GG -glutamylglycine - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - NDGA nordihydroguaiaretic acid - NE norepinephrine - NMDA N-methyl-d-aspartate  相似文献   

11.
Glutamate-mediated neurodysfunction in human immunodeficiency virus (HIV) infection has been primarily suggested by in vitro studies. The regulation of glutamatergic neurotransmission in inflammation is a complex interaction between activation of immune mediators and adaptive changes in the functional elements of the glutamatergic synapse. We have used simian immunodeficiency virus (SIV)-infected macaques to answer the questions (i) whether perturbation of glutamate neurotransmission is evident during progression of immunodeficiency disease and (ii) what are the mechanisms underlying this impairment. Disease progression in SIV-infected macaques both in the periphery and in the brain was documented by clinical and general pathological examination, plasma and brain viral RNA load, T-cell analysis and brain histopathology. We report for the first time, disruption of excitatory amino acid transporters (EAATs), the cardinal glutamate clearing system, during SIV infection and a dramatic loss of EAATs associated with development of rapid acquired immunodeficiency syndrome (AIDS). EAATs impairment was correlated with activation status of microglia. Our data support the glutamate hypothesis for the development of HIV dementia and suggest that the pathogenetic mechanism for the neurodysfunction is the impairment of glutamate clearing which occurs in the stage of AIDS and which is associated with activated microglia.  相似文献   

12.
Opioid agonists were used to investigate the modulation of seizures in the seizure-susceptible El mouse. Morphine andd-Ala2-d-Leu5-enkephalin (DADLE) were injected subcutaneously or intracisternally as prototypic agonists for and opioid receptors. Systemic or intracisternal injection of both morphine and DADLE decreased the incidence of seizures and the seizure score in El mice in a dose-dependent manner. The anticonvulsant effects of morphine and DADLE were reversed by naloxone (2 mg/kg, s.c.). This implies that opioid agonists have anticonvulsant properties which are mediated by and opioid receptors. In conclusion, a deficit in endogenous opioid peptides, which act as anticonvulsants may play a significant role in the etiology or pathophysiology of seizures in the El mouse.  相似文献   

13.
Serotonin (5-HT) plays an important role in the seizures of El mice since the seizure threshold of El mice correlates with the 5-HT concentration in the central nervous system. In this study, the anticonvulsant effect of a 5-HT reuptake blocker, citalopram, was evaluated behaviorally and biochemically. El mouse convulsions were inhibited by oral administration of citalopram for 2 weeks. Citalopram increased tryptophan and tyrosine amounts, and decreased the 5-HT, 5-hydroxy-indoleacetic acid, kynurenine, and dopamine amounts in the brain. These findings show that citalopram depresses monoaminergic metabolism. Given the known convulsant effect of kynurenine, it is suggested that its decrease by citalopram may involve attenuation of El mice seizures.  相似文献   

14.
We compared the changes in monoamines and their metabolites in the El mouse brain induced by GABA-A and GABA-B receptor agonists. Muscimol was used as a GABA-A receptor agonist, and baclofen as a GABA-B receptor agonist. Muscimol (3 mg/kg) significantly increased the DOPAC level in all parts of the mouse brain and the HVA level in the cortex, striatum, and midbrain. No significant change was observed in the dopamine (DA) level. These findings suggest that muscimol may accelerate both the synthesis and catabolism of DA. Baclofen (20 mg/kg) increased the DA level in the hippocampus and midbrain, and the DOPAC level in the hippocampus. Muscimol increased 5-HIAA levels and decreased 5-HT levels. This result suggests that 5-HT metabolism is accelerated by muscimol. No change in 5-HT or 5-HIAA levels was induced by baclofen. The GABA-A receptor system seems to have a potent effect not only on DA neurons, but on 5-HT neurons. However, the GABA-B receptor system appears to have almost no effect on 5-HT neurons, though it appears to have some effect on DA neurons.  相似文献   

15.
After the intracisternal injection of three protease inhibitors which prevent the degradation of methionine enkephalin (amastatin, Des-Pro2-bradykinin, and phosphoramidon) and a mixture of these protease inhibitors, we investigated the effect on convulsive seizures in the seizure-susceptible El mouse. We also measured the cerebral methionine enkephalin content by high-performance liquid chromatography coupled with radioimmunoassay. Protease inhibitors significantly decreased both the incidence of seizures and the seizure score in El mice in a dose-dependent manner. This anticonvulsant effect was reversed by naloxone (2 mg/kg, sc). The cerebral methionine enkephalin content increased significantly after the administration of protease inhibitors in comparison with saline injection. These findings suggest that it was not protease inhibitors but instead increase of endogenous methionine enkephalin that reduced the incidence of seizures and the seizure score in El mice. Together with our previous data, the present findings support our hypothesis that a deficit in anticonvulsant endogenous methionine enkephalin is involved in the pathogenesis of seizures in the El mouse.  相似文献   

16.
In the presence of somatostatin-14 or some of its receptorial agonists, the uptake of large neutral amino acids by isolated brain microvessels was found to be inhibited up to 50%, no other transport system being affected. Although the luminal and abluminal sides of brain endothelial cells are both capable of taking up large neutral amino acids, only uptake from the abluminal side appears to be inhibited by somatostatin. The involvement of a type-2 somatostatin receptor was suggested by assays with a series of receptor-specific somatostatin agonists, and was confirmed by the release of inhibition caused by a specific type-2 receptor antagonist. A type-2-specific mRNA was indeed shown to be present in both bovine brain microvessels ex vivo and primary cultures of endothelial cells from rat brain microvessels.  相似文献   

17.
Noradrenaline (NA) and dopamine (DA) levels in six brain regions of stimulated and nonstimulated El (El[s] and El[ns]) mice and their maternal ddY mice were determined at various ages and various times after a convulsion. The NA levels in the striatum and hippocampus of 12-week-old El[s] and El[ns] mice were lower than in ddY mice, and remained lower in 23-week-old El[s] mice, but not in El[ns] mice. DA levels were lower in the striatum of El[s] mice than in El[ns] and ddY mice at 16 and 23 weeks of age. NA levels decreased during seizure in the striatum and hippocampus of El[s] mice, and returned to preconvulsive levels 1 hr after convulsion in the striatum and 30 min in the hippocampus. DA levels in the striatum of El[s] mice decreased during convulsion and increased from 1 to 10 min after convulsion. These changes suggest that the NAergic systems in the striatum and hippocampus and the DAergic system in the striatum have important roles in relation to seizure susceptibility in El mice.  相似文献   

18.
Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Δψ)-driven aspartate and glutamate transport into synaptic vesicles in addition to H+/sialic acid co-transport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not transport aspartate and glutamate whereas H+/sialic acid co-transport activity was about one-third of the wild-type protein. In this study, we investigate the effects of various mutations on the transport activities of human sialin. Proteoliposomes containing purified heterologously expressed human sialin exhibited both Δψ-driven aspartate and glutamate transport activity and H+/sialic acid co-transport activity. Aspartate and glutamate transport was not detected in the R39C and K136E mutant forms of SLC17A5 protein associated with Salla disease, whereas H+/sialic acid co-transport activity corresponded to 30-50% of the recombinant wild-type protein. In contrast, SLC17A5 protein harboring the mutations associated with infantile sialic acid storage disease, H183R and Δ268SSLRN272 still showed normal levels of Δψ-driven aspartate and glutamate transport even though H+/sialic acid co-transport activity was absent. Human sialin carrying the G328E mutation that causes both phenotypes, and P334R and G378V mutations that cause infantile sialic acid storage disease showed no transport activity. These results support the idea that people suffering from Salla disease have been defective in aspartergic and glutamatergic neurotransmissions.  相似文献   

19.
The release of putative neurotransmitters [aspartate, glutamate, and gamma-aminobutyric acid (GABA)] was studied in hippocampal slices from adult normal C57BL/6J (B6) and El (epileptic) mice. The El mice, a genetic model of temporal lobe epilepsy, had an average of 86 seizures. Sets of B6 and El hippocampal slices (400 microns thick) were incubated in a series of normal and high potassium (60 mM) buffers in the presence or absence of calcium. The calcium-dependent and calcium-independent potassium-induced release of amino acids was compared in each mouse strain. Release of endogenous amino acids was measured using liquid chromatography with electrochemical detection and was expressed as picomoles of amino acid released per milliliter of incubation buffer per minute of incubation per slice +/- SEM. No significant differences were found between the El and B6 mice for the calcium-dependent potassium-evoked release of glutamate (18.20 +/- 2.62 and 15.41 +/- 3.56), or GABA (17.28 +/- 2.90 and 12.73 +/- 1.37), respectively. Aspartate release, however, was significantly higher in the El mice (6.62 +/- 0.69) than in the B6 mice (3.31 +/- 0.72). These findings suggest that enhanced aspartate release may be related to seizure expression in El mice.  相似文献   

20.
Acetyl-l-carnitine (ALCAR) was found to have beneficial effects in senile patients. In recent years many of its effects on the nervous system have been examined, but its mechanism(s) of action remains to be elucidated. We previously reported that it causes release of dopamine in the striatum. In the present paper we report that ALCAR, when administered at intracerebral sites via microdialysis, stimulates the release of amino acids in a concentration-dependent and regionally heterogeneous manner. The effect was strong in the striatum and cerebellum, less so in the frontal cortex, and weak in the thalamus. Seven amino acids were measured: the increase in the level of aspartate, glutamate, and taurine was substantial, and the increase in the level of glycine, serine, threonine, alanine, and glutamine in the microdialysate was minor. The stimulatory effect of ALCAR on the release of amino acids in the striatum was inhibited by the muscarinic antagonist atropine, but was not inhibited by the nicotinic antagonist mecamylamine. The effect of ALCAR on the levels of most of the amino acids tested was independent of the presence of Ca2+ in the perfused. These results indicate that ALCAR, when administered intracerebrally at fairly high concentrations, can affect the level and the release not only of such neurotransmitters as acetylcholine and dopamine, but also of amino acids. The mechanism of action of ALCAR on the release of cerebral amino acids may involve the participation of muscarinic receptors or may be mediated through the release of dopamine, but the lack of Ca2+ dependence indicates a release from the cytoplasmic amino acid pool, possibly through the effect of ALCAR on cell membrane permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号