首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract Leaf litter decomposition experiments were conducted on two deciduous (Nothofagus obliqua (roble)) and Nothofagus pumilio (lenga)) and one evergreen (Nothofagus dombeyi) Nothofagus (Nothofagaceae) species from a single Chilean forest in order to understand how congeneric trees with differing leaf lifespans impact the soil in which they grow. Single‐species litter samples were decomposed in a mixed hardwood forest in Ohio and in a deciduous‐evergreen Nothofagus forest in Chile. In the Ohio forest, the two deciduous species’ litters decomposed at k ≈ 1.00 per year and the evergreen at k ≈ 0.75 per year. In Chile k ranged from k ≈ 0.06 (N. obliqua) to k ≈ 0.23 (N. pumilio) per year. In both experiments, N and P were released faster from the deciduous litters than from evergreen litter. In Ohio, evergreen litter immobilized more N and P for a longer time period than did deciduous litter. As N. dombeyi stands tend to have lower available soil N and P in this particular mixed Nothofagus forest, the increased time of N and P immobilization by N. dombeyi litter suggests a feedback role of the tree itself in perpetuating low N and P soil conditions.  相似文献   

2.
Abstract. We studied the effects of Svalbard reindeer on the abundance of lichens in Spitsbergen. A survey was carried out in 14 areas with contrasting reindeer densities. Separate cover estimates for crustose, fructose and foliose lichens were taken in each area, and related to the density of reindeer pellet groups, a measure of reindeer density. Dominant macro lichen families were identified in 10 areas, and a full record of macrolichen species was taken in four additional areas. Variation in reindeer density is partially due to past overhunting, and subsequent incomplete recovery, releasing some areas from reindeer grazing for 100–200 yr. The cover of fruticose lichens was negatively related to reindeer pellet group density, indicating suppression by Svalbard reindeer. This makes their impact comparable to other members of the Rangifer genus around the northern hemisphere. The generally recorded low abundance of lichens in the diet of Svalbard reindeer compared to other Rangifer species, therefore, was interpreted as the depletion of fruticose lichens in Spitsbergen, and a subsequent switch to alternative foods. Of all fruticose lichens, Stereocaulon spp. appeared least sensitive to grazing. Crustose and foliose lichen cover was independent of reindeer pellet group density. The cover of crustose lichens was significantly related to latitude, with greater cover in more northern areas. Foliose lichens were more abundant in places where moss cover was high. We conclude that the impact of Svalbard reindeer on lichens is dependent on growth form, with fruticose lichens suffering from grazing, whereas foliose lichens might indirectly benefit from higher densities of reindeer or, like crustose lichens, be controlled by other factors.  相似文献   

3.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

4.
Components of litter accession were measured for 2 years in two re growth eucalypt stands, a Nothofagus mixed forest, and a tall shrubland in the temperate forests of southern Tasmania. Total annual litterfall (t ha-1) ranged from 4.77 to 5.64 in the regrowth eucalypt stands and 4.06 to 4.94 and 1.95 to 2.17 in the Nothofagus mixed forest and tall shrubland, respectively. Significant correlations were found between annual litterfall of individual tree species and their respective basal area measured at 1.3 m height. The seasonal patterns of litterfall were most closely related to mean maximum temperatures. However, fall of non-leaf material was also related to gale force winds associated with the spring equinox.  相似文献   

5.
Abstract. Structural (density, height, basal area, above‐ground tree biomass, leaf area index) and functional (leaf phenology, growth rate, fine litter fall, leaf decomposition) traits were quantified in four mature forests of Nothofagus pumilio (lenga) along an altitudinal sequence in Tierra del Fuego, Argentina. Three erect forest stands at 220, 440 and 540m and a krummholz stand at 640 m a.s.l. were selected. Along the altitudinal sequence, stem density increased while DBH, height, biomass, leaf‐size and growth period, mean growth rate and decay rate decreased. Dead stems increased and basal area and fine‐litter fall decreased with an increase in elevation among erect forests, but these trends inverted at krummholz. We suggest that krummholz is not only a morphological response to the adverse climate but is also a life form with functional advantages.  相似文献   

6.
A unique, species‐rich and endangered lichen biota can be found on European coastal and inland sand dunes. However, it is increasingly affected by natural succession as well as by anthropogenic disturbances. We studied lichen diversity on the grey dunes and dune heaths of coastal and inland regions of Estonia. A total of 28 study plots were investigated; in each 0.1 ha study plot general environmental variables and anthropogenic disturbances were described and all epigeic lichen species were identified. We found 66 lichenized fungus (lichen) species, including several rare and ten red‐listed lichens. Multivariate analysis (DCA, CCA) was performed to examine gradients in species composition and to relate variation in species data to environmental factors. In addition, we used redundancy analysis (RDA) to relate variation in species’ trait composition to environmental factors. Species composition on grey dunes differed significantly from that on dune heaths. The characteristic species for grey dunes are, besides several Cladonia species, foliose lichens, e.g. Hypogymnia physodes, Parmelia sulcata and Peltigera spp. Also species’ traits composition was different for either habitat, indicating that sorediate lichens, foliose lichens, lichens with cyanobacterium as the main photobiont, and sparsely branched Cladonia species dominate on grey dunes, while esorediate, green‐algal, crustose and richly branched fruticose lichens are common on dune heaths. Soil pH was the most essential environmental variable for determining both species composition and species’ traits composition. The composition of lichen species was also significantly influenced by forest closeness, soil Mg content and cover of bare sand; the effect of ground disturbances was low compared to the effect of these environmental factors. To protect and conserve the species‐rich lichen biota, it is necessary to protect the dune habitats from building activity, to avoid overtrampling in recreation areas and to regularly remove shrubs and trees.  相似文献   

7.
This study documents the stem size and age-structure in forests dominated by different species of Nothofagus in Torres del Paine National Park (51° S), in the Chilean Patagonian region. We also explored the relationship between the various types of Nothofagus forest and postglacial succession. Pioneer stands on moraine fields 1–2 km of the glacier front are dominated by Nothofagus betuloides and Nothofagus antarctica. Moraines appear to be first colonized by the evergreen N. betuloides, followed within 5–7 years by deciduous N. antarctica. Nothofagus antarctica may replace the former species and develop monospecific stands on glacial valleys. Most trees in the N. antarctica stand studied were older than 40 years and floods may cause a significant mortality of young trees. Recruitment from seed seems to be infrequent. Old-growth stands dominated by deciduous Nothofagus pumilio occupy more stable substrates, and probably represent the last stage of postglacial succession. This long-lived tree species had recorded ages over 200 years. The canopy of N. pumilio forests appears to be a mosaic of even-aged, old-growth patches. We propose that regeneration episodes follow the blowdown of a large portion of the canopy, with long intervals with little or no regeneration. Windstorms may be an important force influencing the regeneration of N. pumilio. Exogenous disturbances, such as floods and windstorms, are an integral part of the forest cycle in the Patagonian region.  相似文献   

8.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

9.
Deciduous forests with temperate broad‐leaved tree species are particularily important in terms of biodiversity and its protection, but are threatened habitats in northern Europe. Using multivariate analyses we studied the effect of forest site type, environmental variables and host tree properties on epiphytic lichen synusiae as well as on the composition of species‐specific functional traits. Epiphytic lichens were examined on Acer platanoides, Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra and U. laevis in two types of forests: Humulus‐type floodplain forests and Lunaria‐type boreo‐nemoral forests on the talus slopes of limestone escarpment (klint forests). Klint forests located near the seashore were under greater maritime influence compared to floodplain forests located in inland Estonia which experience stronger air temperature contrasts. In addition to stand level and climatic variables, tree level factors (bark pH, trunk circumference and cover of bryophytes) considerably affected the species composition of the lichen synusiae. Overall, 137 lichen species were recorded, including 14 red‐listed species characteristic of deciduous trees. We defined 13 lichen societies and showed their preference to forests of a specific site type and/or host tree properties. In forests of both types, most of the epiphytic lichens were crustose, and had apothecia as the fruit bodies and chlorococcoid algae as the photobiont. However, the proportion of lichens with a foliose or fruticose growth form, as well as the proportion of lichens with vegatative diaspores, were higher in floodplain forests. In klint forests with a stronger influence from the wind, crustose species completely dominated, while species with vegetative diaspores were rare and most species dispersed sexually. Lichens with Trentepohlia as the photobiont were characteristic of these forests, and lichens with lirellate ascomata were prevailing, indicating the great uniqueness of the kint forests for epiphytic lichens in the boreo‐nemoral region.  相似文献   

10.
地衣是亚热带山地森林系统附生生物类群的重要组成部分之一,对环境变化极其敏感。为了更好地了解附生地衣对森林边缘效应的响应,我们在云南哀牢山地区原生山地常绿阔叶林中,分别在距林缘5m、25m、50m和 100m处设立样地,收集附生大型地衣的凋落物1年;分析附生地衣凋落物的物种多样性和生物量、功能群特征和组成结构对林缘深度变化的响应特征。研究结果显示,边缘效应能够显著提高林缘附生地衣群落的物种多样性和生物量;其发生的距离最深不超过25m。林缘-林内梯度上,不同地衣功能群的响应模式具有各自的特征。排序分析表明仅在5m样地与其他样地之间存在显著差异,指示种分析则发现仅5m样地具有指示种。哀牢山原生林中边缘效应促进林缘附生地衣生长和分布的现象,可能与当地高湿环境削减了地衣的高光损伤以及以叶状和灌状类群为主的地衣个体受到风力破坏的程度相对较低有关。  相似文献   

11.
Abstract Calculations relating the input of litterfall to litter or forest floor mass in forests generally assume that the forest floor reaches an equilibrium state. Based on this assumption, a decomposition factor (k) can be calculated. In the present paper, this basic assumption is questioned and the implications considered. Data on litterfall and forest floor from blackbutt (Eucalyptus pilularis) regrowth forests and plantations were collated from publications and the authors' studies to evaluate both assumptions and relationships. Blackbutt grows over a wide environmental range but its main distribution is in mild temperate to subtropical conditions. Data were from single‐plot studies, sequential studies and chronosequences in both plantations and native regrowth forests. Stands ranged in age from 3 years to maturity in the case of pure, or almost pure blackbutt stands. The forest floor biomass increased up to 12.3 tha?1 at 33 years of age with no evidence of steady state. Litterfall increased up to 7.8 t ha?1 year?1 and was correlated with crown biomass. Regrowth stands were relatively undisturbed and more than 20 years of age, and litterfall ranged from 4.1 to 11.6 tha?1 year?1 and was correlated with stand basal area. Forest floor mass in regrowth forests was variable between the different aged stands but did not exceed 18 tha?1, and there was no evidence that steady state was achieved. The forest floor mass was related to, and approximately 1.7 times the input of litterfall. Although the assumption of steady state was not valid, a k' factor was estimated that related input to forest floor mass and this was relatively constant across all stands and correlated with generalized environmental data. Although assumptions of forest floor equilibrium cannot be supported for E. pilularis, it still should be possible to predict forest floor mass and decomposition from stand conditions and general environmental data.  相似文献   

12.
Fungal specific primer sequences for the amplification of the large subunit of the mitochondrial ribosomal DNA (mtLSU) are presented in this paper. Fungal specific primers make the separation of fungal and algal cells prior to DNA‐extraction from lichens unnecessary. This is especially useful in crustose and small foliose and fruticose lichens. An example from a complex of closely related species of the crustose lichen genus Biatora shows the usefulness of mtLSU‐sequences for studies of infraspecific variability and lower level systematics of lichenized ascomycetes.  相似文献   

13.
桂东不同林龄马尾松人工林的生物量及其分配特征   总被引:8,自引:0,他引:8       下载免费PDF全文
根据5a、15a、21a、32a、60a生的5个不同林龄的15块1 000m2样地(3次重复)调查资料,利用21株不同年龄和径阶的马尾松样木数据,建立以胸径(D)为单变量的生物量回归方程.采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林龄马尾松人工林的生物量,并分析了其组成、分配特征及不同林龄生物量的变化趋势.结果表明:(1)林分的总生物量随林龄而增加,5a、15a、21a、32a和60a生马尾松人工林生物量分别为15.03、125.93、183.51、191.53、405.31 Mg/hm2,其中活体植物占75.01%~94.19%,地上凋落物占0.86%~24.99%.(2)层次分配方面乔木层占绝对优势,占90.20%~98.35%,且随林龄的增加而增大,其次为地上凋落物,占0.86%~24.99%;草本层和灌木层生物量较小,分别占0.47%~34.85%和0.32%~27.00%,均随林龄的增加呈递减趋势.(3)乔木层器官分配以干所占比例最高,占49.93%~83.10%,且随林龄而增加;根相对比较稳定,占6.97%~12.82%;枝、叶分别占11.75%~14.83%、1.33%~23.65%,均随林龄增大而下降.灌木层器官分配除幼龄林为根>枝>叶,其余的均呈枝>根>叶的趋势.草本层中龄林和近熟林生物量地下>地上,其他林龄生物量地上>地下.(4)各林龄凋落物生物量在3.48~6.68Mg/hm2,规律性不强.(5)马尾松人工林乔木层各器官及林分生物量具有良好的优化增长模型,其32a生林分生物量高于同林龄的楠木人工林,低于热带雨林,是一种速生丰产、固碳潜力大的优良造林树种.  相似文献   

14.
Question: Can lichen communities be used to assess short‐ and long‐term factors affecting seral quaking aspen (Populus tremuloides) communities at the landscape scale? Location: Bear River Range, within the Rocky Mountains, in northern Utah and southern Idaho, USA. Method: Forty‐seven randomly selected mid‐elevation aspen stands were sampled for lichens and stand conditions. Plots were characterized according to tree species cover, basal area, stand age, bole scarring, tree damage, and presence of lichen species. We also recorded ammonia emissions with passive sensors at 25 urban and agricultural sites throughout an adjacent populated valley upwind of the forest stands. Nonmetric multidimensional scaling (NMS) ordination was used to evaluate an array of 20 variables suspected to influence lichen communities. Results: In NMS, forest succession explained most variance in lichen composition and abundance, although atmospheric nitrogen from local agricultural and urban sources also significantly influenced the lichen communities. Abundance of nitrophilous lichen species decreased with distance from peak ammonia sources and the urban center in all aspen succession classes. One lichen, Phaeophyscia nigricans, was found to be an effective bioindicator of nitrogen loading. Conclusions: Lichen communities in this landscape assessment of aspen forests showed clear responses to long‐term (stand succession) and short‐term (nitrogen deposition) influences. At the same time, several environmental factors (e.g. tree damage and scarring, distance to valley, topography, and stand age) had little influence on these same lichen communities. We recommend further use of epiphytic lichens as bioindicators of dynamic forest conditions.  相似文献   

15.
Relations between irradiance (I) and lichen growth were investigated for five macro‐lichens growing at two sites in Sweden. The lichens represented different mycobiont–photobiont associations, two morphologies (foliose, fruticose) and two life forms (epiphytic, terricolous). The lichens were transplanted at two geographically distant sites in Sweden (1000 km apart) from Sept 1995 to Sept 1996 in their typical microhabitats, where microclimate and growth were followed. Between April/May and Sept 96, the terricolous species had a dry matter gain of 0·2 to 0·4 g (g DW)–1 and the epiphytes 0·01 to 0·02 g (g DW)–1. When related to area, growth amounted to 30 to 70 g m?2 for the terricolous species and to 1 to 4 g m?2 for the epiphytes. There was a strong correlation between growth and intercepted irradiance when the lichens were wet (Iwet), with 0·2 to 1·1 g lichen dry matter being produced per MJ solar energy. Across the 10 sets of transplants, light use efficiencies of dry matter yield (e) ranged between 0·5 and 2%, using an energy equivalent of 17·5 kJ g?1 of lichen dry matter. The higher productivity of the terricolous species was due to longer periods with thallus water contents sufficient for metabolic activity and because of the higher mean photon flux densities of their microhabitat. A four‐fold difference in photosynthetic capacity among the species was also important. It is concluded that lichen dry matter gain was primarily related to net carbon gain during metabolically active periods, which was determined by light duration, photon flux density and photosynthetic capacity.  相似文献   

16.
Montane forests provide the natural framework to test for various ecological settings at distinct elevations as they may affect population demography, which in turn will affect the spatial genetic structure (SGS). We analyzed the fine-scale SGS of Nothofagus pumilio, which dominates mountain areas of Patagonia, in three pairs of sites at contrasting elevations (low- vs. high-elevation). Within a total area of 1 ha fresh leaf tissue from 90 individuals was collected at each of the six studied stands following a spatially explicit sampling design. Population genetic diversity parameters were analyzed for all sampled individuals using five polymorphic isozyme loci, and a subset of 50 individuals per stand were also screened for five microsatellite loci. The SGS was assessed on 50 individuals/stand, using the combined datasets of isozymes and microsatellites. Most low-elevation stands consisted of older individuals with complex age structures and genetically diverse plots. In contrast, high-elevation stands and one post-fire low-elevation population yielded even-aged structures with evidence of growth suppression, and were genetically homogeneous. All stands yielded significant SGS. Similarly to mature stands of the non-sprouter congener Nothofagus dombeyi, multi-age low-altitude N. pumilio yielded significant SGS weakened by competing species of the understory and the formation of seedling banks. Alike the sprouter Nothofagus antarctica, high-altitude stands produced significant SGS as a consequence of occasional seedling establishment reinforced by vegetative spread.  相似文献   

17.
Abstract. We examined epiphytic macrolichen communities in Pseudotsuga menziesii (Douglas‐fir) forests across the western Oregon landscape for relationships to environmental gradients, stand age and structure, and commercial thinning. We used a retrospective, blocked design through the Coast and the western Cascade ranges of Oregon. Each of our 17 blocks consisted of a young, unthinned stand (age 50–110 yr); an adjacent, thinned stand of equivalent age; and an old‐growth stand (age > 200 yr). We found 110 epiphytic macrolichen taxa in the stands. Forage‐providing alectorioid lichens and the nitrogen‐fixing cyanolichen Lobaria oregana associated strongly with old‐growth stands and remnant old trees in younger stands (unthinned + thinned). Relative to unthinned stands, thinned stands had a slightly higher abundance of alectorioid lichens and a greater presence of Hypogymnia imshaugii. However, thinned stands hosted a lower landscape‐level (γ) diversity, lacking many species that occurred infrequently in the unthinned stands. Patterns in the lichen community composition correlated strongly with climatic gradients; the greatest variation in composition was between the Coast and Cascade ranges. The difference in communities between mountain ranges was greatest among stands 70–110 yr old, suggesting a difference in lichen successional dynamics between the ranges.  相似文献   

18.
Ecological investigations on lichen fields of the Central Namib   总被引:4,自引:0,他引:4  
Number, geographic location, extent and characteristics of lichen fields were recorded within the Central Namib fog desert. Their occurrence is restricted to stable surfaces in the near coastal belt, while percentage cover changes with exposure, elevation and distance from the coastline. Maximum coverage of 70% was found at a distance of 5 km from the coast near Wlotzkas Baken. The highest biomass rate of 400 mg/m2 was measured here at a distance of 1 km from the coast, where Teloschistes capensis appears as cushion growth type. Distribution patterns on hills, riverbeds and polygon structures are described. In general, fruticose and foliose lichens dominate on SW-exposed, ocean-facing habitats. Crustose species dominate on NE-E-exposed plots.Species composition and distribution, particularly the distribution of the fruticose species T. capensis (L. f.) Vain. ex Müll. Arg., were investigated in seventysix plots along twenty W-E transects in one lichen field near Wlotzkas Baken. T. capensis occurs in three different growth types: tuft, cushion and mat. Four zones are distinguished within the above lichen field, each dominated by a growth form indicating various influences of different climatic, geomorphic or biogenic parameters.  相似文献   

19.
Litterfall and fine root production were measured for three years as part of a carbon balance study of three forest stands in the Pacific Northwest of the United States. A young second-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stand, a second-growth Douglas-fir with red alder (Alnus rubra Bong.) stand, and an old-growth (∼550 years) Douglas-fir stand were monitored for inputs of carbon and nitrogen into the soil from litterfall and fine root production, as well as changes in soil C and N. Fine root production and soil nutrient changes were measured through the use of soil ingrowth bags containing homogenized soil from the respective stands. Litterfall biomass was greatest in the Douglas-fir-alder stand (527 g m−2 yr−1) that annually returned nearly three times the amount of N as the other stands. Mean residence time for forest floor material was also shortest at this site averaging 4.6 years and 5.5 years for C an N, respectively. Fine root production in the upper 20 cm ranged from 584 g m−2 in the N rich Douglas-fir-alder stand to 836 g m−2 in the old-growth stand. Fine root production (down to one meter) was always greater than litterfall with a below:above ratio ranging from 3.73 for the young Douglas-fir stand to 1.62 for the Douglas-fir-alder stand. The below:above N ratios for all three stands closely approximate those for biomass. Soil changes in both C and N differed by site, but the soil C changes in the old-growth stand mirrored those obtained in an ongoing CO2 flux study. Results from the soil ingrowth bags strongly suggest that this method provides a simple, but sufficient device for measuring potential fine root biomass production as well as soil chemical changes.  相似文献   

20.
Litterfall and its subsequent decomposition are important feedback mechanisms in the intrasystem cycling of nutrients in forest ecosystems. The amount of litterfall and the rate of decomposition are expected to vary with stand age and climate. Over a 2-year period, decomposition of five litter types were measured in two second-growth forest stands and one old-growth stand in the Cascade Mountains of southern Washington state, USA. Both second-growth stands were dominated by Douglas-fir [Pseudotsuga menziesii (Mirb.,) Franco] but one had a significant proportion of red alder (Alnus rubra Bong.), a nitrogen (N) fixer. The old-growth stand was dominated by Douglas-fir and western hemlock [Tsuga heterophylla (Raf.) Sarg.]. All stands had a relatively shallow layer of forest floor mass. The five litter types were placed in each stand to evaluate decomposition patterns. Despite significant differences in stand age, microclimate and mean residence times for carbon (C) and N, the rates of litter mass loss varied only slightly between sites. The relative order of species litter mass loss was: vine maple ≫ salal = western hemlock > Douglas-fir (from the youngest stand) > Douglas-fir (from the N rich stand with red alder). The initial litter lignin concentration, not lignin:N, was the primary determinant of decomposition rates, although the initial N concentration was the predictor for mass loss after 2 years in the N rich Douglas-fir-alder stand. All litter types showed immobilization of N for nearly 2 years. Data for Douglas-fir litter suggest that higher levels of N may retard decomposition of tissues with greater amounts of lignified material. The retention of N by the litter appeared influenced by the nutrient capital of the stands as well as the forest floor C:N ratio. Decomposition was minimal during the cold winter months, but displayed a definitive peak period during early Fall with wet weather, warm soils, and fungal activity. Thus, long-term climatic change effects on forest floor C storage may depend more on changes in seasonality of precipitation changes than just temperature changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号