首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis to examine (1) the relative importance of terrestrial and algal‐based food resources to shrimps and other consumers and determine (2) if the relative importance of these food resources changed along the stream continuum. We examined δ15N and δ13C signatures of leaves, algae, macrophytes, biofilm, insects, snails, fishes, and shrimps at three sites (300, 90, and 10 m elev.) along the Río Espíritu Santo, which drains the Caribbean National Forest, Puerto Rico. Isotope signatures of basal resources were distinct at all sites. Results of two‐source δ13C mixing models suggest that shrimps relied more on algal‐based carbon resources than terrestrially derived resources at all three sites along the continuum. This study supports other recent findings in tropical streams, demonstrating that algal‐based resources are very important to stream consumers, even in small forested headwater streams. This study also demonstrates the importance of doing assimilation‐based analysis (i.e., stable isotope or trophic basis of production) when studying food webs.  相似文献   

2.
1. Use of the natural ratios of carbon and nitrogen stable isotopes as tracers of trophic interactions has some clear advantages over alternative methods for food web analyses, yet is limited to situations where organic materials of interest have adequate isotopic separation between potential sources. This constrains the use of natural abundance stable isotope approaches to a subset of ecosystems with biogeochemical conditions favourable to source separation. 2. Recent studies suggest that stable hydrogen isotopes (δD) could provide a robust tracer to distinguish contributions of aquatic and terrestrial production in food webs, but variation in δD of consumers and their organic food sources are poorly known. To explore the utility of the stable hydrogen isotope approach, we examined variation in δD in stream food webs in a forested catchment where variation in δ13C has been described previously. 3. Although algal δD varied by taxa and, to a small degree, between sites, we found consistent and clear separation (by an average of 67‰) from terrestrial carbon sources. Environmental conditions known to affect algal δ13C, such as water velocity and stream productivity did not greatly influence algal δD, and there was no evidence of seasonal variation. In contrast, algal δ13C was strongly affected by environmental factors both within and across sites, was seasonally variable at all sites, and partially overlapped with terrestrial δ13C in all streams with catchment areas larger than 10 km2. 4. While knowledge of isotopic exchange with water and trophic fractionation of δD for aquatic consumers is limited, consistent source separation in streams suggests that δD may provide a complementary food web tracer to δ13C in aquatic food webs. Lack of significant seasonal or spatial variation in δD is a distinct advantage over δ13C for applications in many aquatic ecosystems.  相似文献   

3.
SUMMARY 1. Transfer of carbon from freshwater to terrestrial ecosystems can occur through predation on adult aquatic insects, but the significance of this trophic pathway to the energetics of riparian communities is poorly understood. We used stable isotopes of carbon and nitrogen to explore linkages between aquatic insect production and the nutrition of web‐building and free‐living spiders alongside two streams in the North Island of New Zealand. 2. δ13C values for riparian tree leaves (means for each site = ?32.2 and ?30.3‰) were distinct from those of lichens collected from stream channel rocks and instream algae, both of which were similar (?23.4 to ?22.4‰). δ15N values for leaves were similar at both sites (?3.4 and ?2.7‰), but algae were considerably more depleted in δ15N atonesite suggesting significant differences in instream nitrogen sources between the twostreams. 3. Isotope values for potential aquatic prey of spiders indicated that aquatic algal production was their primary carbon source at both sites. Terrestrial invertebrates collected and assumed to be potential prey reflected a range of carbon sources and represented several trophic levels. 4. At one site, δ13C values indicated a primarily algae‐aquatic insect pathway of carbon transfer to both web‐building and free‐living spider guilds. The other site appeared to have a primarily terrestrial carbon pathway for the free‐living spider guild, and a mixed aquatic‐terrestrial pathway for the web‐building guild. 5. Overall, web‐building spiders were estimated to obtain around 61% of their body carbon from aquatic production compared with 55% for free‐living spiders. Our findings suggest that consumption of prey derived from aquatic sources can provide significant nutrition for spiders living along some stream channels. This pathway may represent an important feedback mechanism contributing to the energetics of riparian communities at sites where aquatic insect production is high.  相似文献   

4.
5.
The food source utilization and trophic relationship of the fish assemblage in the Red River mangrove ecosystem, Vietnam were examined using dual isotope analysis. The carbon and nitrogen stable isotope signatures of 23 fish species ranged from ?24.0 to ?15.7‰ and from 8.8 to 15.5‰, respectively. Cluster analysis based on the δ13C and δ15N signatures clearly separated the mangrove fish into five feeding groups, representing detritivores, omnivores, piscivores, zoobenthivores, and zooplanktivores, which concurred with the dietary information. The results suggested that mangrove carbon contributed a small proportion in the diets of the mangrove fish, with dominant food sources coming from benthic invertebrates, including ocypodid and grapsid crabs, penaeid shrimps, bivalves, gastropods, and polychaetes. The δ15N values showed that the food web structure may be divided into different trophic levels (TLs). The lowest TLs associated with Liza macrolepis, Mugil cephalus, and Periophthalmus modestus; 18 fish species had TLs between 3.0 and 3.8; and Pennahia argentata had the highest TL (c. 4.0).  相似文献   

6.
1. Despite the ubiquity and abundance of water striders (Hemiptera: Gerridae) in temperate streams and rivers and their potential usefulness as sentinels in contaminant studies, little is known about their feeding ecology and lipid dynamics. 2. In this study we used stable isotopes of carbon (δ13C) and nitrogen (δ15N) and elemental carbon to nitrogen ratios (C/N) to assess dietary habits and lipid content, respectively, for water striders. 3. To determine diet‐tissue fractionation factors, nymphs of the most common species in New Brunswick, Canada, Aquarius remigis were reared in the laboratory for 73 days and exhibited rapid isotopic turnover in response to a switch in diet (C half‐life = 1.5 days, N half‐life = 7.8 days). Their lipid content increased towards the end of the growing season and resulted in lower δ13C values. Diet‐tissue fractionation factors were established after correction of δ13C data for the confounding effect of de novo lipid synthesis (strider δ13Cadj– diet δ13Cadj = 0.1‰, strider δ15N – diet δ15N = 2.7‰). 4. Water striders from the majority of 45 stream sites (83%) in New Brunswick had less than 50% contribution of aquatic carbon to their diets but showed a gradual increase in the contribution of this carbon source to their diet with increasing stream size. 5. These data indicate that striders exhibit a strong connection to terrestrial carbon sources, making them important users of energy subsidies to streams from the surrounding catchment. However, this dependence on terrestrial organic matter may limit their utility as indicators of contamination of aquatic systems by heavy metals and other pollutants.  相似文献   

7.
Stream food web function is often assessed using carbon stable isotope assessments of the relative contribution of autochthonous and allochthonous sources of organic matter to consumer diets. As a result, variability in source signatures can strongly influence the assessment of carbon flows. To examine the implications of temporal source variability on food web interpretations, benthic algal δ13C signatures were measured over 8 weeks in five streams in subtropical Queensland, Australia. All food webs were largely driven by benthic algal carbon; however, substantial week-to-week variation in benthic algal δ13C signatures modified the calculated contributions of algae to consumer diets, with differences in autochthonous contributions of up to 11% between weeks. In addition, variable algal signatures led to many occasions in which the δ13C signatures of some consumers was beyond the range of available sources, meaning the mixing model analyses did not have a valid solution. Together, these findings suggest that temporal variability in algal δ13C signatures can strongly influence the interpretation of carbon flows in stream food webs. Future food web studies should assess the temporal variability of sources prior to sampling consumers, in order to characterise end member signatures and their relevance to consumers at the time of collection.  相似文献   

8.
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

9.
We review the use of stable carbon isotope ratios (δ13C) and radiocarbon natural abundances (Δ14C) for stream food web studies. The δ13C value of primary producers (e.g., periphytic algae, hereafter periphyton) in streams is controlled by isotopic fractionation during photosynthesis and variable δ13C of dissolved CO2. When periphyton δ13C differs from that of terrestrial primary producers, the relative contribution of autochthony and allochthony to stream food webs can be calculated. Moreover, the variation in periphyton δ13C can reveal how much stream consumers rely on local resources because each stream habitat (e.g., riffle vs. pool, open vs. shaded) usually has a distinctive δ13C. However, periphyton δ13C often overlaps with that of terrestrial organic matter. On the other hand, periphyton Δ14C is less variable than δ13C among habitats, and reflects the Δ14C of dissolved CO2, which could be a mixture of “aged” (Δ14C < 0 ‰) and “modern” (Δ14C > 0 ‰) carbon. This is because the Δ14C is corrected by its δ13C value for the isotopic fractionation during photosynthesis. Recent studies and our data indicate that many stream food webs are supported by “aged” carbon derived from the watershed via autochthonous production. The combined use of δ13C and Δ14C allows robust estimation of the carbon transfer pathway in a stream food web at multiple spatial scales ranging from the stream habitat level (e.g., riffle and pool) to watershed level (autochthony and allochthony). Furthermore, the Δ14C of stream food webs will expand our understanding about the time frame of carbon cycles in the watersheds.  相似文献   

10.
Carbon: freshwater plants   总被引:15,自引:1,他引:14  
δ13C values for freshwater aquatic plant matter varies from ?11 to ?50‰ and is not a clear indicator of photosynthetic pathway as in terrestrial plants. Several factors affect δ13C of aquatic plant matter. These include: (1) The δ13C signature of the source carbon has been observed to range from +1‰ for HCO3? derived from limestone to ?30‰ for CO2 derived from respiration. (2) Some plants assimilate HCO3?, which is –7 to –11‰ less negative than CO2. (3) C3, C4, and CAM photosynthetic pathways are present in aquatic plants. (4) Diffusional resistances are orders of magnitude greater in the aquatic environment than in the aerial environment. The greater viscosity of water acts to reduce mixing of the carbon pool in the boundary layer with that of the bulk solution. In effect, many aquatic plants draw from a finite carbon pool, and as in terrestrial plants growing in a closed system, biochemical discrimination is reduced. In standing water, this factor results in most aquatic plants having a δ13C value similar to the source carbon. Using Farquhar's equation and other physiological data, it is possible to use δ13C values to evaluate various parameters affecting photosynthesis, such as limitations imposed by CO2 diffusion and carbon source.  相似文献   

11.
12.
  1. Glacial retreat, accompanied by shifts in riparian vegetation and glacier meltwater inputs, alters the energy supply and trophic structure of alpine stream food webs. Our goal in this study was to enhance understanding of dietary niches of macroinvertebrates inhabiting different alpine streams with contrasting glacial and non‐glacial (groundwater, precipitation, snowmelt) water inputs in conjunction with seasonal and habitat‐specific variation in basal resource availability.
  2. We measured a range of stream physico‐chemical attributes as well as carbon and nitrogen isotopes (δ13C, δ15N) of macroinvertebrates and primary food sources at seven sites across seasons within a Swiss glaciated catchment (Val Roseg) undergoing rapid glacial retreat (1–2 km between 1997 and 2014). Sampling sites corresponded to streams used in a previous (1997/1998) study within the same alpine catchment.
  3. Physico‐chemical attributes showed wide variation in environmental conditions across streams and seasons. Significant correlation among physico‐chemical proxies of glacier meltwater (phosphate‐P, total inorganic carbon, conductivity, turbidity) and macroinvertebrate δ13C, δ15N, and size‐corrected standard ellipse area (a proxy for feeding niche width) values showed that the extent of glacial water input shapes the energy base among alpine streams. Feeding niche differences among common alpine stream insect taxa (Chironomidae, Baetidae, Heptageniidae) were not significant, indicating that these organisms probably are plastic in feeding behaviour, opportunistically relying on food resources available in a particular stream and season.
  4. Seasonal trends in macroinvertebrate δ13C largely followed patterns in periphyton δ13C values, indicating that autochthonous resources were the main consumer energy source within the stream network, as shown previously. The overall range in macroinvertebrate δ13C (?33.5 to ?18.4‰) and δ15N (?6.9 to 6.7‰) values also corresponded to values measured in the previous study, suggesting that macroinvertebrates altered diets in line with changes in environmental conditions and food resources during a period of rapid glacial retreat. Our results suggest that environmental changes brought on by rapid glacial retreat have not yet caused a profound change in the trophic structure within these fluvial networks.
  相似文献   

13.
1. Stable isotope ratios of aquatic invertebrates, aquatic mosses and leaves of riparian plants were used to determine whether marine‐derived nutrients from breeding colonies of the Westland petrel (Procellaria westlandica) were incorporated into the food webs of small streams in New Zealand. 2. The δ15N signatures of all plants and animals examined were higher by 3.6–4.6‰ in small streams draining catchments with petrel colonies than in nearby streams where petrels were absent. δ13C values of leaves from terrestrial plants were also enriched by about 2‰ where petrels were present, but the carbon ratios of aquatic species were depleted in 13C, rather than enriched, suggesting that any marine signal was over‐ridden by isotopic shifts related to photosynthetic fractionation. 3. A high marine‐nitrogen signal was maintained along the 3 km length of Scotchman Creek with the δ15N values of leptophlebiid mayflies and predatory insects ranging from 7.4–9.5 and 9.2–11.9‰, respectively. 4. Most nutrients derived from petrels are likely to be translocated to streams via the soil, which they enter in the form of excreta, spilled food, feathers, dead chicks, and abandoned eggs. However, because changes in δ15N values are brought about by soil processes such as volatilisation of ammonia, nitrification and denitrification, it is difficult to predict the exact isotope signature of nitrogen entering a stream. Tentative estimates of the proportion of marine‐derived nitrogen in stream biota, calculated using a mass‐balance approach, ranged from 28–38%. 5. Our findings indicate that marine nutrients transported inland by seabirds can be incorporated into the food webs of streams. In pre‐human times when there were many more seabird colonies on mainland New Zealand than exist today, marine‐derived nutrients introduced by birds may have had significant effects on nitrogen cycling and the productivity of New Zealand streams.  相似文献   

14.
Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used for more than two decades in analyses of food web structure. The utility of isotope ratio measurements is based on the observation that consumer δ13C values are similar (<1‰ difference) to those of their diet, while consumer δ15N values are about 3‰ higher than those of their diet. The technique has been applied most often to aquatic and aboveground terrestrial food webs. However, few isotope studies have examined terrestrial food web structure that includes both above- and belowground (detrital) components. Here, we review factors that may influence isotopic signatures of terrestrial consumers in above- and belowground systems. In particular, we emphasize variations in δ13C and δ15N in belowground systems, e.g., enrichment of 13C and 15N in soil organic matter (likely related to soil microbial metabolism). These enrichments should be associated with the high 13C (~3‰) enrichment in belowground consumers relative to litter and soil organic matter and with the large variation in δ15N (~6‰) of the consumers. Because such enrichment and variation are much greater than the trophic enrichment generally used to estimate consumer trophic positions, and because many general predators are considered dependent on energy and material flows from belowground, the isotopic variation in belowground systems should be taken into account in δ13C and δ15N analyses of terrestrial food webs. Meanwhile, by measuring the δ13C of key predators, the linkage between above- and belowground systems could be estimated based on observed differences in δ13C of primary producers, detritivores and predators. Furthermore, radiocarbon (14C) measurements will allow the direct estimation of the dependence of predators on the belowground systems.  相似文献   

15.
Even though the suitability of macrophytes to act as a carbon source to food webs has been questioned by some studies, some others indicate that macrophyte-derived carbon may play an important role in the trophic transfer of organic matter in the food web of shallow lakes. To evaluate the importance of macrophytes to food webs, we collected primary producers—macrophytes and periphyton—and consumers from 19 South American shallow lakes and analyzed their carbon stable isotopes composition (δ13C). Despite the diversity of inorganic carbon sources available in our study lakes, the macrophytes’ δ13C signatures showed a clear bimodal distribution: 13C-depleted and 13C-enriched, averaging at ?27.2 and ?13.5‰, respectively. We argue that the use of either CO2 or HCO3 ? by the macrophytes largely caused the bimodal pattern in δ13C signals. The contribution of carbon from macrophytes to the lake’s food webs was not straightforward in most of the lakes because the macrophytes’ isotopic composition was quite similar to the isotopic composition of periphyton, phytoplankton, and terrestrial carbon. However, in some lakes where the macrophytes had a distinct isotopic signature, our data suggest that macrophytes can represent an important carbon source to shallow lake food webs.  相似文献   

16.
  • 1 Large amounts of terrestrial detritus enter many low‐order forested streams, and this organic material is often the major basal resource in the metazoan food webs of such systems. However, despite their apparently low biomass, algae are the dominant food of organisms in a number of aquatic communities which conventionally would have been presumed to be dependent on allochthonous detritus, particularly those in the tropics and also in lowland intermittent streams in arid Australia.
  • 2 The dual stable isotope signatures (δ13C and δ15N) of potential primary food sources were compared with the isotopic signatures of common aquatic animals in lowland intermittent streams in south‐eastern Australia, in both spring and summer, to determine whether allochthonous detritus was an important nutritional resource in these systems. The isotopic signatures of the major potential allochthonous plant food sources (Eucalyptus, Phalaris and Juncus) overlapped, but were distinct from algae and the dominant macrophytes growing in the study reaches. The isotopic signatures of biofilm were more spatially and temporally variable than those of the other basal resources.
  • 3 Despite allochthonous detritus having relatively high C : N ratios compared to other potential basal resources, results from isosource mixing model calculations demonstrated that this detritus, and the associated biofilm, were the major energy sources assimilated by macroinvertebrate primary consumers in both spring and summer. The importance of these energy sources was also reflected in animals higher in the food web, including predatory macroinvertebrates and fish. These resources were supplemented by autochthonous sources of higher nutritional value (i.e. filamentous algae and macrophytes, which had relatively low C : N ratios) when they became more prolific as the streams dried to disconnected pools in summer.
  • 4 The results highlight the importance of allochthonous detritus (particularly from Eucalyptus) as a dependable energy source for benthic macroinvertebrates and fish in lowland intermittent streams of south‐eastern Australia. This contrasts with previous stable isotope studies conducted in lowland intermittent streams in arid Australia, which have reported that the fauna are primarily dependent on autochthonous algae.
  相似文献   

17.
1. We used stable isotopes to study the temporal (early summer versus autumn) pattern of use of terrestrial and aquatic sources of organic carbon by consumers in two bedrock‐confined reaches of a grassland river in New Zealand.
2. The major sources of organic carbon available to primary consumers were expected to be terrestrial leaf‐litter and biofilm from the stream channel. These putative carbon sources showed no significant change in mean δ13C between summer and autumn. Leaf litter (mean δ13C13C compared to biofilm (mean δ13C>?19.92).
3. In contrast to leaf litter and biofilm, the δ13C of consumers changed over time, being enriched in 13C in the autumn compared with early summer. Both the magnitude (>5‰ in some cases) and rapidity of this shift (< 3 months) was surprising.
4. A two‐source mixing model indicated that, during early summer, terrestrial carbon comprised> 50% of tissue carbon for 15 of the 17 taxa of aquatic consumers analysed. During autumn, terrestrial carbon comprised> 50% of the tissue carbon of only five of 25 taxa. Because the mean δ13C of putative food sources was consistent over time, the shift in δ13C values for consumers is attributed to a change in relative amounts of terrestrial and aquatic carbon available for consumption.
5. Because seston consists of a mixture of many particles of diverse origin, it may provide an integrated measure of catchment‐wide sources of organic matter entering a stream channel. Like the tissues of most consumers, mean δ13C values for seston showed a significant shift toward 13C enrichment. This indicated that the relative availability of terrestrial carbon decreased from summer to autumn.
6. The actual quantity of carbon contributed to the stream food‐web by this potential terrestrial–aquatic link is unknown. Although terrestrial carbon may comprise a high proportion of the tissue carbon of consumers prior to summer, the majority of secondary production (and carbon sequestration) probably occurs during early summer as a consequence of rising temperature and high quality food in the form of biofilm.  相似文献   

18.
The aim of this study was to test if changes in land use alter the isotopic signature of fish species, promoting changes in the trophic position and food resource partitioning between these consumers. Three different systems were investigated: pasture streams (n = 3), streams in sugar cane plantations (n = 3) and reference streams (n = 3). Fish species Aspidoras fuscoguttatus, Astyanax altiparanae, Characidium zebra, Hisonotus piracanjuba and Knodus moenkhausii were selected, and their nitrogen and carbon isotopic compositions were estimated to assess changes in the trophic level and partitioning of food items consumed. The composition of δ13C (‰) only differed among the land use categories for A. altiparanae, H. piracanjuba and K. moenkhausii. Resource partitioning was different for all species, with changes in the sources or proportions they consumed in each land use category, but only A. altiparanae introduced new food sources in large quantity in altered land uses. It is important to note, however, that the results from the resource partitioning analysis are limited due to large overlapping of isotopic signatures between the analysed food resources. All fish species exhibited variation in δ15N (‰), with the highest values found in streams under sugar cane or pasture influence. Despite the variation in nitrogen isotopic values, only C. zebra and H. piracanjuba displayed changes in trophic level. Therefore, it is believed that the increase in the δ15N (‰) value of the individuals collected in streams under the influence of sugar cane or pasture was due to the greater influence of livestock dung and chemical and organic fertilizers. The results also highlight the importance of studying consumer species along with all forms of resources available at each location separately, because the signatures of these resources also vary within different land uses.  相似文献   

19.
1. Trophic fractionation was studied in short‐term laboratory feeding experiments with larvae of the deposit‐feeding midge Chironomus riparius. Larvae were fed food of terrestrial (oats, peat) and aquatic origin (Spirulina, Tetraphyll®). 2. By analysing both whole larvae and isolated gut contents we were able to distinguish between the isotopic signature of recently ingested food and that of assimilated carbon and nitrogen in body tissue. Additionally we studied the effects of microbial conditioning, i.e. the colonisation and growth on food particles of microbes, on the isotopic signal of food resources. 3. Nitrogen fractionation for the different food types ranged from 0.67‰ to 2.68‰ between consumer and diet and showed that isotopic fractionation can be much lower than the value of 3.4‰ that is commonly assumed. 4. Microbial degradation of food particles resulted in an approximate doubling of the δ15N in 8 days, from 6.24 ± 0.05‰ to 11.36 ± 0.56‰. Values for δ13C increased only marginally, from ?20.66 ± 0.11‰ to ?20.34 ± 0.12‰. These results show that microbial conditioning of food may affect dietary isotope signatures (in particular N) and, unless accounted for, could introduce an error in measures of trophic fractionation. Microbial conditioning could well account for some of the variation in fractionation reported in the literature.  相似文献   

20.
1. Rainforest streams in eastern Madagascar have species‐rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate assemblages dominated by collector‐gatherer taxa. We sampled a suite of benthic insects and their food resources in three primary rainforest streams within Ranomafana National Park in eastern Madagascar and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents and combined biomass and stable isotope data to examine stream community responses to deforestation in the region, which is a threatened and globally important hotspot for freshwater biodiversity. 2. Gut analyses showed that most taxa depended largely on amorphous detritus, obtained either from biofilms (collector‐gatherers) or from seston (microfilterers). Despite different resource availability in forest versus agriculture streams, diets of each taxon did not differ between stream types, suggesting inflexible feeding modes. Carbon sources for forest stream insects were difficult to discern using δ13C. However, in agriculture streams dependence on terrestrial carbon sources was low relative to algal sources. Most insect taxa with δ13C similar to terrestrial carbon sources (e.g. the stonefly Madenemura, the caddisfly Chimarra sp. and Simulium blackflies) were absent or present at lower biomass in agriculture streams relative to forest streams. Conversely, collector‐gatherers (Afroptilum mayflies) relied on algal carbon sources and had much higher biomass in agriculture streams. 3. Our analyses indicate that a few collector‐gatherer species (mostly Ephemeroptera) can take advantage of increased primary production in biofilms and consequently dominate biomass in streams affected by deforestation. In contrast, many forest stream insects (especially those in the orders Plecoptera, Trichoptera and Diptera) depend on terrestrial carbon sources (i.e. seston and leaf litter), are unable to track resource availability and consequently decline in streams draining deforested landscapes. These forest‐specialists are often micro‐endemic and particularly vulnerable to deforestation. 4. The use of consumer biomass data in stable isotope research can help detect population‐level responses to shifts in basal resources caused by anthropogenic change. We also suggest that restoration of vegetated riparian zones in eastern Madagascar and elsewhere could mitigate the deleterious effects of deforestation on sensitive, endemic stream taxa that are dependent on terrestrial carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号