首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enrichment technique was used to isolate 11 di-, tri-, and tetra microsatellites for the parasitic fly Philornis downsi (Diptera: Muscidae). These loci were polymerase chain reaction amplified in singleplexes or two-plexes for P. downsi. The loci showed low to moderate polymorphism, exhibited between three and four alleles, and observed heterozygosity ranged from 0.05 to 0.86. These new markers will be useful for population-level and paternity analyses and will provide valuable information about the ecology of this high-impact parasite of vulnerable bird species.  相似文献   

2.
We examine here, in a single year (2005), phenotypic divergence along a 560‐m elevation gradient in Darwin's small ground finch (Geospiza fuliginosa) in the Galápagos Islands. In this sample, four composite measures of phenotypic traits showed significant differences along the 18‐km geographical cline extending from lowlands to highlands. Compared with lowland birds, highland birds had larger and more pointed beaks, and thicker tarsi, but smaller feet and claws. Finches in an intervening agricultural zone had predominantly intermediate trait values. In a second, mark–recapture study we analyse selection on morphological traits among birds recaptured across years (2000–2005) in lowland and highland habitats. Birds were more likely to survive in the highlands and during the wet season, as well as if they had large beaks and bodies. In addition, highland birds exhibited higher survival rates if they had small feet and pointed beaks – attributes common to highland birds as a whole. Lowland birds were more likely to survive if they possessed the opposite traits. Selection therefore reinforced existing morphological divergence, which appears to reflect local adaptation to differing resources during the predominantly drought‐ridden conditions that characterized the 5‐year study. Alternative explanations – including genetic drift, matching habitat choice, deformation by parasites, and the effects of wear – received little or no support. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 45–59.  相似文献   

3.
Darwin''s finches have radiated from a common ancestor into 14 descendent species, each specializing on distinct food resources and evolving divergent beak forms. Beak morphology in the ground finches (Geospiza) has been shown to evolve via natural selection in response to variation in food type, food availability and interspecific competition for food. From a mechanical perspective, however, beak size and shape are only indirectly related to birds'' abilities to crack seeds, and beak form is hypothesized to evolve mainly under selection for fracture avoidance. Here, we test the fracture-avoidance hypothesis using finite-element modelling. We find that across species, mechanical loading is similar and approaches reported values of bone strength, thus suggesting pervasive selection on fracture avoidance. Additionally, deep and wide beaks are better suited for dissipating stress than are more elongate beaks when scaled to common sizes and loadings. Our results illustrate that deep and wide beaks in ground finches enable reduction of areas with high stress and peak stress magnitudes, allowing birds to crack hard seeds while limiting the risk of beak failure. These results may explain strong selection on beak depth and width in natural populations of Darwin''s finches.  相似文献   

4.
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.  相似文献   

5.
Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade‐offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The ‘fecundity advantage hypothesis’ predicts female‐biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis‐causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in‐nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12‐year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host–parasite system.  相似文献   

6.
7.
8.
Parasites induce phenotypic modifications in their hosts, which can compromise host fitness. For example, the parasitic fly Philornis downsi , which was recently introduced to the Galápagos Islands, causes severe naris and beak malformation in Darwin's finches. The fly larvae feed on tissues from the nares of developing finch nestlings, thereby altering the size and shape of the nares and beak. Although the parasitism is age-specific (adult finches are not parasitized), naris and beak malformations persist into adulthood as parasite-induced malformations. We systematically examined adult populations of Darwin's small ground finch, Geospiza fuliginosa , on the islands of Santa Cruz for P. downsi -induced malformation. We found that malformed birds had significantly longer nares, and shorter, shallower beaks, than birds considered to be normal (i.e. with no nares or beak malformation). In addition, normal birds showed an isometry between naris length and beak dimensions (beak length feather and beak depth), which was not found in malformed birds. These differences suggest that beak morphology was influenced by P. downsi parasitism. Interestingly, we did not find any evidence of developmental impairment (smaller body size) or reduced foraging efficiency (lower body condition) between normal and malformed birds. Our findings of P. downsi -induced malformation raise new questions about the evolutionary trajectory and conservation status for this group of birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 577–585.  相似文献   

9.
Learned bird songs evolve via cultural evolution, with song patterns transmitted across generations by imitative learning. In Darwin''s finches of the Galápagos Islands, males learn songs from their fathers, and song types can be maintained across multiple generations. However, little is known about the time frame over which specific song types are preserved, in the face of copy errors and corresponding modifications to song structure. Here we investigate cultural evolution in songs of male Geospiza fortis, at Academy Bay, Santa Cruz Island, comparing songs recorded in 1961 by R. Bowman (20 individuals) to those recorded in 1999 by J. Podos (16 individuals). For each individual, we characterized four timing and six frequency parameters, and assessed inter-individual variation in song structure using multivariate analysis. Several 1961 song types persisted into 1999, some with remarkable fidelity. Variation among song types was extensive during both years, and we detected no changes in 10 vocal parameters across the sampling period. These results illustrate temporal continuity in a culturally acquired trait, and raise questions about mechanisms that promote stability in song structure.  相似文献   

10.
The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human‐processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.  相似文献   

11.
Darwin''s finches are a classic example of adaptive radiation, a process by which multiple ecologically distinct species rapidly evolve from a single ancestor. Such evolutionary diversification is typically explained by adaptation to new ecological opportunities. However, the ecological diversification of Darwin''s finches following their dispersal to Galápagos was not matched on the same archipelago by other lineages of colonizing land birds, which diversified very little in terms of both species number and morphology. To better understand the causes underlying the extraordinary variation in Darwin''s finches, we analyze the evolutionary dynamics of speciation and trait diversification in Thraupidae, including Coerebinae (Darwin''s finches and relatives) and, their closely related clade, Sporophilinae. For all traits, we observe an early pulse of speciation and morphological diversification followed by prolonged periods of slower steady‐state rates of change. The primary exception is the apparent recent increase in diversification rate in Darwin''s finches coupled with highly variable beak morphology, a potential key factor explaining this adaptive radiation. Our observations illustrate how the exploitation of ecological opportunity by contrasting means can produce clades with similarly high diversification rate yet strikingly different degrees of ecological and morphological differentiation.  相似文献   

12.
The parental food compensation hypothesis suggests that parents may compensate for the negative effects of parasites on chicks by increased food provisioning. However, this ability differs widely among host species and may also depend on ecological factors such as adverse weather conditions and habitat quality. Although weed management can improve habitat quality, management measures can bring about a temporary decrease in food availability and thus may reduce parents’ ability to provide their nestlings with enough energy. In our study we investigated the interaction of parasitism and weed management, and the influence of climate on feeding rates in a Darwin’s tree finch species, which is negatively impacted by two invasive species. The larvae of the invasive parasitic fly Philornis downsi ingest the blood and body tissues of tree finch nestlings, and the invasive Blackberry Rubus niveus affects one of the main habitats of Darwin’s tree finches. We compared parental food provisioning of the Small Tree Finch Camarhynchus parvulus in parasitized and parasite‐free nests in three different areas, which differed in invasive weed management (no management, short‐term and long‐term management). In a parasite reduction experiment, we investigated whether the Small Tree Finch increases food provisioning rates to nestlings when parasitized and whether this ability depends on weed management conditions and precipitation. Our results provide no evidence that Small Tree Finches can compensate with additional food provisioning when parasitized with P. downsi. However, we found an increase in male effort in the short‐term management area, which might indicate that males compensate for lower food quality with increased provisioning effort. Furthermore, parental food provisioning was lower during rainfall, which provides an explanation for the negative influence of rain on breeding success found in earlier studies. Like other Darwin’s finches, the Small Tree Finch seems to lack the ability to compensate for the negative effects of P. downsi parasitism, which is one explanation for why this invasive parasite has such a devastating effect on this host species.  相似文献   

13.
Abstract.— Carotenoids cannot be synthesized by birds and thus have to be ingested with food, suggesting that ca-rotenoid-based plumage coloration is environmentally determined. However signaling functions ascribed to plumage imply that plumage coloration is the outcome of an evolutionary process based on genetic variation. By means of a cross-fostering design we show significant effects of both a common rearing environment and the brood from which a nestling originally came from (common origin) on the plumage coloration of nestling great tits ( Parus major ). This demonstration of origin-related variation in carotenoid-based plumage coloration suggests that the observed variation of the trait has a partial genetic basis. Consistent with environmental determination of this trait, we also found a significant positive correlation between the color saturation of nestlings and their foster-father's plumage. There was no significant correlation between nestling plumage coloration and the food quantity provided to the nestlings by the male, the female, or both parents. This suggests that the nestling-foster father correlation arises by the carotenoid quantity ingested rather than the food quantity per se. No significant nestling-true father correlation was found, which suggests that nestling plumage coloration did not indirectly evolve due to sexual selection. Consistent with this result there was no significant correlation between the nestling's plumage color and its coloration as a breeding adult the following year, suggesting that nestling plumage color is a different trait than the first year plumage.  相似文献   

14.
Abstract

Gizzards were examined from 334 adult and 62 nestling starlings collected in mixed farmland during 1971–72. The birds ate insects, spiders, earthworms, snails, millipedes, centipedes, seeds, and fruits. Starlings ate fewer subterranean animals (7%) than those usually living partially hidden (45%), on the ground (31%), or on vegetation (18%). About half the invertebrates eaten were 2–5 mm long and about a quarter 6–10 mm long. Nestlings tend to be fed significantly larger items than were eaten by adults. The commonest items in adult starlings were Coleoptera adults, Lepidoptera larvae, Hemiptera, and fruits; in nestlings, Coleoptera adults and Diptera adults and larvae were important. Earthworms were found in all the nestlings. More than 50% of adult gizzards contained earthworm chaetae in wetter months, but fewer in drier months. The diet of starlings, despite considerable overlap with the foods eaten by mynas, rooks, and magpies, included somewhat different components and proportions of the food supply. Fruits were found in adults only; most were probably eaten after harvest. Although predation on two major pasture pests—Costelytra zealandica and Wiseana cervinata larvae—was insubstantial, nearly 40% of the total invertebrates eaten by adult starlings were insect pest species.  相似文献   

15.
Describing and explaining the geographic within‐species variation in phenotypes (“phenogeography”) in the sea over a species distribution range is central to our understanding of a variety of eco‐evolutionary topics. However, phenogeographic studies that have a large potential to investigate adaptive variation are overcome by phylogeographic studies, still mainly focusing on neutral markers. How genotypic and phenotypic data could covary over large geographic scales remains poorly understood in marine species. We crossed 75 noninbred sires (five origins) and 26 dams (two origins; each side of a hybrid zone) in a factorial diallel cross in order to investigate geographic variation for early survival and sex ratio in the metapopulation of the European sea bass (Dicentrarchus labrax), a highly prized marine fish species. Full‐sib families (= 1,950) were produced and reared in a common environment. Parentage assignment of 7,200 individuals was performed with seven microsatellite markers. Generalized linear models showed significant additive effects for both traits and pleiotropy between traits. A significant nonadditive genetic effect was detected. Different expression of traits and distinct relative performances were found for reciprocal crosses involving populations located on each side of the main hybrid zone located at the Almeria‐Oran front, illustrating asymmetric reproductive isolation. The poor fitness performance observed for the Western Mediterranean population of sea bass is discussed as it represents the main source of seed hatchery production, but also because it potentially illustrates nonadaptive introgression and maladaptation.  相似文献   

16.
To explore the nest survival rate of Reeves's pheasant (Syrmaticus reevesii) and the nest-site factors that affect it,we conducted artificial nest experiments with reference to natural nests at Dongzhai National Nature Reserve (DNNR),Henan Province and Pingjingguan,Hubei Province from April to June 2014 simulating the situation in its early and later breeding season.We also determined distance characteristics of the nest sites by ArcGIS 10.0.Nest survival models were constructed in Program MARK for data analysis.Results indicated that in the early breeding season,the apparent survival rate (ASR) in DNNR (52.4%) was significantly greater than that in Pingjingguan (13.5%),and the ASR in the later breeding season in DNNR (26.7%) was not indistinctively correlated with Pingjingguan (3.2%).The daily survival rate (DSR) in the later breeding season was 93.8% in DNNR and 92.0% in Pingjingguan,respectively.The DSRs were both negatively correlated with nest distance to forest edges and settlements.The DSR in Pingjingguan was positively correlated with nest distance to paths and negatively correlated with nest distance to water sources.However,the DSR in DNNR was negatively correlated with nest distance to paths but positively correlated with nest distance to water sources.  相似文献   

17.
Differences in the survival rates of males and females over the period from hatching to recruitment can have important impacts on individual fitness and population demographics. However, whilst the influence of an individual's sex on nestling growth and survival has been well studied, less is known about sex‐specific survival over the period between fledging and recruitment. Here, we analyse nestling survival and recruitment in an isolated, island population of house sparrows (Passer domesticus), using data collected over a 4‐year period. Nestlings that had a greater mass at 1 day old were more likely to fledge. Recruitment was also positively associated with day 11 mass. The positive influence of nestling mass on survival to fledging also increased as brood size increased. There was no difference in the survival of male and female individuals prior to fledging. In contrast, over the period from fledging to recruitment, females had significantly less mortality than males. Recruitment was also positively associated with 11‐day‐old mass. Neither the nestling sex ratio nor the fledging sex ratio deviated from 0.5, but the sex ratio amongst recruits was female biased. Our study shows that sex can influence juvenile survival, but also shows that its effect varies between different life‐history stages; therefore, these stages should be considered separately if we want to understand at what point sex‐specific differences in juvenile survival occur. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 680–688.  相似文献   

18.
苜蓿品种(系)对苜蓿斑蚜存活率和生殖力的影响   总被引:3,自引:0,他引:3  
在田间抗蚜性鉴定的基础上,在室内25℃条件下,选用4个抗蚜性不同的苜蓿品种(系),测定了不同苜蓿品种(系)上苜蓿斑蚜Therioaphis maculate (Buckton)若虫存活率及生殖力的影响。结果表明: 苜蓿斑蚜在不同苜蓿品种(系)3、6叶期及成株期的存活率均以HA-3上最低,分别为8.00%±1.15%,21.27%±7.40%,17.07%±3.03%;Hu上最高,分别为25.63%±3.68%,42.27%±2.76%,55.10%±0.19%;且苗期显著低于成株期。以若虫存活率和内禀增长率作为测定抗生性的指标,供试品种(系)对苜蓿斑蚜抗生性的大小依次为HA-3>G3>JH>Hu,与田间抗性鉴定结果基本相近。  相似文献   

19.
20.
AIMS: To evaluate the effects of bacterial haemoglobin on bacterial growth and alpha-amylase formation under different aeration conditions. METHODS AND RESULTS: Enterobacter aerogenes was transformed with the gene encoding Vitreoscilla (bacterial) haemoglobin, vgb. The growth kinetics and ability to synthesize alpha-amylase enzyme were investigated in this transformed Enterobacter strain as well as in two other Enterobacter control strains that do not harbour the vgb gene. Such comparison was made under variable aeration conditions, using the agitation rate as a measure of aeration. The expression of bacterial haemoglobin-supported cell growth determined as O.D.600 and cell viability in addition to the alpha-amylase production. These positive effects of bacterial haemoglobin were observed under both low and high aerations, but at different extents. CONCLUSIONS: In addition to improving cell growth under low aeration, the bacterial haemoglobin is able to promote bacterial cell tolerance during exposure to high oxygen tension. SIGNIFICANCE AND IMPACT OF THE STUDY: The expression of bacterial haemoglobin is advantageous in reducing the burden of certain toxic conditions such as high oxygen levels. It may have the same impact on some environmental toxic substances. This, haemoglobin biotechnology can be extended to induce enzymes of pollutants degradation or production of some useful industrial substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号