首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Within the last two decades, ecological stoichiometry (ES) and nutritional geometry (NG, also known as geometric framework for nutrition) have delivered novel insights into core questions of nutritional ecology. These two nutritionally explicit frameworks differ in the ‘nutrient currency’ used and the focus of their past research; behavioural feeding strategies in NG, mainly investigating terrestrial organisms, and trophic ecology in ES, mainly in aquatic settings. However, both NG and ES have developed in explaining patterns across various scales of biological organization. Integrating specific tools of these frameworks could advance the field of nutritional ecology by unifying theoretical and empirical approaches from the organismal to ecosystem level processes. Toward this integration, we identified 1) nutrient/element budgets as a shared concept of both frameworks that encompass nutrient intake, retention, and release, 2) response surface plots of NG as powerful tools to illustrate processes at the organismal level and 3) the concept of consumer‐driven nutrient recycling (CNR) of ES as a useful tool bridging organism and ecosystem scales. We applied response surface plots to element budget data from an ES study to show how this approach can deliver new insights at the organismal level, e.g. by showing the interplay between egestion and excretion depending simultaneously on the consumed amount of carbon and phosphorus based on variation across individuals. By integrating concepts of ES and NG to model microbial uptake and mineralization of nitrogenous wastes reported in a NG study, we also demonstrate that considering biochemically explicit mineralization rates of organic wastes can improve predictions of CNR by reducing over‐ or underestimation of mineralization depending on the quality of the consumer's diet. Our presented tools and approaches can help to bridge the organismal and ecosystem level, advancing the predictive power of studies in nutritional ecology at multiple ecological scales.  相似文献   

2.
Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal‐dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD‐associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure‐based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining.  相似文献   

3.
《植物生态学报》2016,40(3):264
Bamboo ecology and nutrient management require guidance of a set of theoretical principles. By focusing on the contents of multiple nutrient elements and their ratios and summarizing recent research findings in biology, ecology and silvics of bamboos, this paper seeks to establish the bamboo ecological stoichiometry (BES) in order to support the sustainable development of bamboo forests. It is considered that: (1) bamboos have the ubiquitous characteristics of stoichiometry, with average leaf C:N:P of 380:16:1, which complies to the “homeostasis hypothesis”; (2) the internal factors such as organs, ages and development stages and the external factors such as soil, climate and harvest can all affect the characteristics of bamboo stoichiometry; (3) changes in the ecological stoichiometry of bamboos affect the bamboo biological and ecological processes including photosynthesis, nutrients uptakes, flowering, shootings and growth, community dynamics, and qualities of bamboo products; (4) the principles of BES have been preliminarily used to guide the nutrient diagnosis, balanced fertilization, and production of high-quality and high-yield bamboos. As a new tool, BES can be further improved to integrate biology and silviculture under the background of ecological and environmental protection and food safety. Future research should place more emphasis on elucidating the ecological homeostatic mechanisms for more bamboos, as well as on understanding the stoichiometric principles in producing high-quality bamboo shoots, the bamboo-soil stoichiometric interaction processes, the nutrient diagnosis and stoichiometric balanced fertilization, and the optimal ecosystem management of bamboo forests.  相似文献   

4.
5.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   

6.
Assessing the functional implications of soil biodiversity in ecosystems   总被引:1,自引:0,他引:1  
Soil communities are among the most species-rich components of terrestrial ecosystems. A major challenge for soil ecologists is to formulate feasible research strategies that will preserve and capitalize on the biodiversity resources of the soil. This article considers the role of soil organism diversity by concentrating on: (i) the relationship between soil biodiversity and ecosystem function; (ii) what issues need to be explored; (iii) studies carried out in the Ecotron controlled environment facility; and (iv) how stable isotope techniques can improve our understanding of the relationship between soil biodiversity and ecosystem function. It is advocated that: (i) the objective of any soil biodiversity study should always be the generation of general concepts, rather than local, system-specific observations; and (ii) any empirical study can be properly interpreted only within a quantitative ecological framework.  相似文献   

7.
Ecosystem metabolism and nutrient uptake in an urban,piped headwater stream   总被引:1,自引:0,他引:1  
Piped streams, or streams that run underground, are often associated with urbanization. Despite the fact that they are ubiquitous in many urban watersheds, there is little empirical evidence regarding the ecological structure and function of piped stream reaches. This study measured ecosystem metabolism, nutrient uptake, and related characteristics of Pettee Brook—an urban stream that flows through several piped sections in Durham, New Hampshire, USA. Pettee Brook had high chloride and nutrient concentrations, low benthic biomass, and low rates of gross primary productivity (GPP), ecosystem respiration (ER), and nutrient uptake along its entire length during summer. Spring was a period of elevated biological activity, as increased light availability in the un-piped sections of the stream led to substantially higher GPP, ER, NH4 uptake, and PO4 uptake in these open reaches. Piped reaches of Pettee Brook were similar to open reaches in terms of water quality, dissolved O2 concentration, temperature, and discharge. Piped reaches did, however, have significantly less light, shallower sediments, and no debris dams. The absence of light inhibited autotrophic activity in piped reaches, resulting in the complete loss of GPP as well as a significant reduction in benthic AFDM and chlorophyll a biomass. Heterotrophic activity in piped reaches was not impaired to the same extent as autotrophic activity. Reduced ER was observed in piped reaches during the summer, but we failed to find significantly lower DOC or nutrient uptake rates in piped reaches than in open reaches. Carbon consumption in piped reaches, which do not have significant autochthonous or allochthonous carbon replenishment, must rely primarily on upstream inputs of organic matter. These results suggest that although ecological conditions in piped streams may be degraded beyond the extent of other urban stream reaches, piped reaches may still sustain some measurable ecosystem function.  相似文献   

8.
To meet agendas for biodiversity conservation and mitigation of climate change, large-scale restoration initiatives propose ecological restoration as an alternative that can reconcile these two objectives. In ongoing ecosystem restoration, increased diversity is always associated with increased productivity (and consequent carbon stock), which is among the most important ecosystem functions. The ecological paradigm of this association is that ecosystem biodiversity (B) is positively related to both ecosystem functions and services (EF and ES). However, BEF and BES relationships vary spatially and temporally, which makes understanding these relationships relevant and important for practical restoration actions. In this study, we asked how biodiversity and carbon stock recovery occurs during tropical forest restoration. We reviewed literature of the relationships between BEF and BES in the context of ecological restoration and asked whether ecological restoration can recover both. In addition, we conducted a metadata analysis of studies on the recovery of biodiversity and biomass in regenerating tropical forests (n = 83) to find the best model that describes this relationship. In general, studies showed that ecosystem biodiversity and productivity are positively related, and that restoration can recover both. We found an asymptotic and positive correlation between biodiversity and biomass in tropical forests, suggesting limitation of the mutual gains of these two ecosystem properties during restoration. We discuss these results in the context of ecological theory and the practice of ecological restoration.  相似文献   

9.
Tests of the biodiversity and ecosystem functioning (BEF) relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate. Here, we investigated whether and how the effects of biodiversity mediated by non-trophic interactions among benthic bioturbator species vary according to community biomass and ecosystem processes. We hypothesized that (1) bioturbator biomass and species richness interact to affect the rates of benthic nutrient regeneration [dissolved inorganic nitrogen (DIN) and total dissolved phosphorus (TDP)] and consequently bacterioplankton production (BP) and that (2) the complementarity effects of diversity will be stronger on BP than on nutrient regeneration because the former represents a more integrative process that can be mediated by multivariate nutrient complementarity. We show that the effects of bioturbator diversity on nutrient regeneration increased BP via multivariate nutrient complementarity. Consistent with our prediction, the complementarity effects were significantly stronger on BP than on DIN and TDP. The effects of the biomass-species richness interaction on complementarity varied among the individual processes, but the aggregated measures of complementarity over all ecosystem processes were significantly higher at the highest community biomass level. Our results suggest that the complementarity effects of biodiversity can be stronger on more integrative ecosystem processes, which integrate subsidiary “simpler” processes, via multivariate complementarity. In addition, reductions in community biomass may decrease the strength of interspecific interactions so that the enhanced effects of biodiversity on ecosystem processes can disappear well before species become extinct.  相似文献   

10.
卢伊  陈彬 《生态学报》2015,35(8):2438-2451
随着城市发展面临的生态问题日益显著,部分研究者试图通过对自然生态系统进行类比来寻求解决途径,城市代谢理论应运而生。当以系统科学来研究城市生态系统时,哲学思想的引入为探索和城市及城市代谢的内涵提供了最原始的桥梁。因此,在介绍城市代谢内涵与研究进展的基础上,融合产业、家庭、社会等多尺度代谢理论,对城市代谢的边界进行扩展,将其分为狭义与广义两类,结合亚里士多德的"四因说"对其质料因(组分)、形式因(结构)、动力因(驱动力)和目的因(功能)进行识别分析,据此将城市代谢研究方法归纳为质料、形式和混合研究方法三类,并提出未来研究的主要动向和解决手段。城市代谢"四因图"可为相关研究者提供参考。  相似文献   

11.
Although human activity is considered to be a major driving force affecting the distribution and dynamics of Mediterranean ecosystems, the full consequences of projected climate variability and relative sea-level changes on fragile coastal ecosystems for the next century are still unknown. It is unclear how these waterfront ecosystems can be sustained, as well as the services they provide, when relative sea-level rise and global warming are expected to exert even greater pressures in the near future (drought, habitat degradation and accelerated shoreline retreat). Haifa Bay, northern Israel, has recorded a landward sea invasion, with a maximum sea penetration 4,000 years ago, during an important period of urban development and climate instability. Here, we examine the cumulative pressure of climate shifts and relative sea-level changes in order to investigate the patterns and mechanisms behind forest replacement by an open-steppe. We provide a first comprehensive and integrative study for the southern Levant that shows that (i) human impact, through urbanization, has been the main driver behind ecological erosion in the past 4,000 years; (ii) climate pressures have reinforced this impact; and (iii) local coastal changes have played a decisive role in eroding ecosystem resilience. These three parameters, which have closely interacted during the last 4,000 years in Haifa Bay, clearly indicate that for an efficient management of the coastal habitats, anthropogenic pressures linked to urban development must be reduced in order to mitigate the predicted effects of Global Change.  相似文献   

12.
Grasslands are the dominant landscape in China, accounting for 40% of the national land area. Research concerning China's grassland ecosystems can be chronologically summarized into four periods: (i) pre-1950s, preliminary research and survey of grassland vegetation and plant species by Russians, Japanese and Western Europeans, (ii) 1950-1975, exploration and survey of vegetation, soils and topography as part of natural resource inventory programmes by regional and national institutions mainly led by the Chinese Academy of Sciences, (iii) 1976-1995, establishment of field stations for long-term ecological monitoring and studies of ecosystem processes, (iv) 1996-present, comprehensive studies of community dynamics and ecosystem function integrating multi-scale and multidisciplinary approaches and experimental manipulations.Major findings of scientific significance in China's grassland ecosystem research include: (i) improved knowledge on succession and biogeochemistry of the semi-arid and temperate grassland ecosystems, (ii) elucidation of life-history strategies and diapause characteristics of the native grasshopper species as one of the key grassland pests, and (iii) development of effective management strategies for controlling rodent pests in grassland ecosystems. Opportunities exist for using the natural grasslands in northern China as a model system to test ecosystem theories that so far have proven a challenge to ecologists worldwide.  相似文献   

13.
Widespread evidence shows that local species richness (α-diversity) loss hampers the biomass production and stability of ecosystems. β-Diversity, namely the variation of species compositions among different ecological communities, represents another important biodiversity component, but studies on how it drives ecosystem functioning show mixed results. We argue that to better understand the importance of β-diversity we need to consider it across contexts. We focus on three scenarios that cause gradients in β-diversity: changes in (i) abiotic heterogeneity, (ii) habitat isolation, and (iii) species pool richness. We show that across these scenarios we should not expect universally positive relationships between β-diversity, production, and ecosystem stability. Nevertheless, predictable relationships between β-diversity and ecosystem functioning do exist in specific contexts, and can reconcile seemingly contrasting empirical relationships.  相似文献   

14.
陈力原  黄甘霖 《生态学报》2020,40(18):6678-6686
社会经济要素作为城市生态系统的重要组成部分,能够反映居民特征、衡量居民福祉,是城市生态研究中不可或缺的内容。然而,在城市生态研究中合理、有效利用社会经济要素的规范和框架尚未得到充分研究。城市生态研究中常用的社会经济指标包括哪些?社会经济指标的常见数据源有哪些?社会经济要素可协助回答哪些方面的科学问题?为回答上述问题,本文综述了全球范围内11个长期城市生态研究站点开展的系统性调查和案例研究,总结社会经济指标的内容、数据来源,以及这些研究的议题。结果表明:常用社会经济指标可分为人口基本信息、认知和意愿、行为三类,前两者在城市生态研究中的应用已较为普遍。数据的主要来源包括政府部门提供的统计资料或普查数据、商业数据,以及研究人员开展的独立调查。在城市生态研究中纳入社会经济要素有助于分析社会与环境的相互关系,进而揭示城市系统中人与自然的耦合效应。近年来,我国城市生态研究快速发展,但研究中欠缺对社会经济要素的考虑与利用,可能会逐渐偏离国际上城市生态学的主流研究方向。社会经济数据获取困难是当前研究者面临的重大挑战,同时也存在一些机遇能够促进我国城市生态研究纳入社会经济要素,例如利用新兴数据和大数据手段、构建统一的指标框架和数据共享机制,以及充分了解和利用政府公开的统计数据。  相似文献   

15.
The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.  相似文献   

16.
The critically endangered golden sun‐moth Synemon plana occurs in urban fringe areas of southeastern Australia that are currently experiencing rapid and extensive development. The urban fringe is a complex and uncertain environment in which to manage threatened species with the intersection of fragmented natural habitats, built environments and human populations generating novel, poorly understood interactions. In this context, management frameworks must incorporate ecological processes as well as social considerations. Here, we explore how biodiversity sensitive urban design might improve the fate of the golden sun‐moth, and threatened species generally, in urban fringe environments. We: (i) developed an expert‐informed Bayesian Belief Network model that synthesizes the current understanding of key determinants of golden sun‐moth population viability at sites experiencing urbanizing pressure; (ii) quantified the nature and strength of cause‐effect relationships between these factors using expert knowledge; and (iii) used the model to assess expectations of moth population viability in response to different combinations of management actions. We predict that adult survival, bare ground cover and cover of resource plants are the most important variables affecting the viability of golden sun‐moth populations. We also demonstrate the potential for biodiversity sensitive urban design as a complementary measure to conventional management for this species. Our findings highlight how expert knowledge may be a valuable component of conservation management, especially in addressing uncertainty around conservation decisions when empirical data are lacking, and how structured expert judgements become critical in supporting decisions that may help ameliorate extinction risks faced by threatened species in urban environments.  相似文献   

17.
Scaling approaches in ecology assume that traits are the main attributes by which organisms influence ecosystem functioning. However, several recent empirical papers have found only weak links between traits and ecosystem functioning, questioning the usefulness of trait-based ecology (TBE). We argue that these studies often suffer from one or more widespread misconceptions. Specifically, these studies often (i) conflict with the conceptual foundations of TBE, (ii) lack theory- or hypothesis-driven selection and use of traits, (iii) tend to ignore intraspecific variation, and (iv) use experimental or study designs that are not well suited to make strong tests of TBE assumptions. Addressing these aspects could significantly improve our ability to scale from traits to ecosystem functioning.  相似文献   

18.
19.
Marine eutrophication and benthos: the need for new approaches and concepts   总被引:6,自引:0,他引:6  
In this review, using examples drawn from field observations or experimental studies, our goals are (i) to briefly summarize the major changes, in terms of species composition and functional structure, occurring in phyto and zoobenthic communities in relation to nutrient enrichment of the ecosystems; particular interest is given to the major abiotic and biotic factors occurring during the eutrophication process, (ii) to discuss the direct and indirect influences of benthic organisms on eutrophication and whether the latter can be controlled or favoured by benthos; most benthic species play a major role in the process of benthic nutrient regeneration, affecting primary production by supplying nutrients directly and enhancing rates of pelagic recycling; experimental studies have shown that the impact of benthic fauna on benthic–pelagic coupling and nutrient release is considerable. Thus, once the eutrophication process is engaged—that is, high organic matter sedimentation—it may be indirectly favoured by benthic organisms; benthos should always be considered in eutrophication studies, (iii) to evaluate the limits of our observations and data, highlighting the strong need for integrated studies leading to new concepts. Coastal ecosystems and benthic communities are potentially impacted by numerous human activities (demersal fishing, toxic contaminants, aquaculture…); in order to design strategies of ecosystem restoration or rehabilitation, we have to better understand coastal eutrophication and develop tools for quantifying the impacts; in order to achieve this goal, some possible directions proposed are: integrated studies leading to new concepts, model development based on these concepts and finally comparison of various ecosystems on a global scale.  相似文献   

20.
城市生态风险评价研究进展   总被引:15,自引:2,他引:15  
随着城市化发展和城市人居环境的恶化,城市生态风险越来越受到关注,但尚缺乏有关城市生态风险评价的深入系统研究.本文依据城市生态学原理及生态风险评价框架从驱动力、风险源、风险受体与评价终点,以及生态风险综合评价方法等方面对城市生态风险评价研究进行综述.指出城市经济社会活动类型与程度是城市生态风险产生的主要驱动力;城市生态系统不同等级功能实体和城市整体是城市生态风险评价中的风险受体;城市生态风险评价终点包括城市生态系统结构、过程、功能要素,以及城市整体水平的性质和功能变化;耦合了社会经济需求的生态系统模型是城市生态风险评价方法的发展方向.未来城市生态风险评价研究应明确生态风险管理具体目标,确定综合性评价终点,建立多指标评价体系和综合评价方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号