首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA) sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling.  相似文献   

3.
The satyrine butterfly subtribe Mycalesina has undergone one of the more spectacular evolutionary radiations of butterflies in the Old World tropics. Perhaps the most phenotypically pronounced diversification of the group has occurred in the Malagasy region, where 68 currently recognized species are divided among five genera. Here, we report the results of phylogenetic analyses of sequence data from the cytochrome c oxidase II and cytochrome b mitochondrial genes, for a total of 54 mycalesine taxa, mostly from Madagascar. These molecular data complement an existing data set based on male morphological characters. The molecular results support the suggestion from morphology that three of the five Malagasy genera are paraphyletic and support the monophyly of at least three major morphological clades. Novel hypotheses of terminal taxon pairs are generated by the molecular data. Dense taxon sampling appears to be crucial for elucidating phylogenetic relationships within this large radiation. A potentially complex scenario for the origin of Malagasy mycalesines is proposed.  相似文献   

4.
Dung beetle species belonging to the worldwide tribe Canthonini (Scarabaeidae) and occurring in Madagascar are all endemic to that island. The Malagasy Canthonini form three lineages, one of which is the group Longitarsi that includes five genera. The phylogenetic relationships of Malagasy Canthonini are not fully resolved and only few species of Longitarsi have been included in previous studies. Here we infer the phylogenetic relationships within the Longitarsi group using molecular data and together with morphological examination revise the systematics of the group. The five genera of the Longitarsi group form one monophyletic clade and thus we suggest the synonymization of the younger genera Sikorantus, Phacosomoides, Madaphacosoma and Aleiantus; with the oldest genus belonging to this clade Epactoides. We describe two new species: Epactoides jounii sp. n and Epactoides mangabeensis sp. n. Most of the species of Longitarsi inhabit the eastern rainforests, with very low local species diversity and highly restricted geographical ranges. In the group Longitarsi four species are wingless. The loss of wings has evolved at least twice, at high altitude along the mountain range.  相似文献   

5.

Background  

Numerous studies, using in aggregate some 28 genes, have achieved a consensus in recognizing three groups of plants, including Amborella, as comprising the basal-most grade of all other angiosperms. A major exception is the recent study by Goremykin et al. (2003; Mol. Biol. Evol. 20:1499–1505), whose analyses of 61 genes from 13 sequenced chloroplast genomes of land plants nearly always found 100% support for monocots as the deepest angiosperms relative to Amborella, Calycanthus, and eudicots. We hypothesized that this conflict reflects a misrooting of angiosperms resulting from inadequate taxon sampling, inappropriate phylogenetic methodology, and rapid evolution in the grass lineage used to represent monocots.  相似文献   

6.
The relationships of Nesomyinae, a group of murid rodents endemic to the island of Madagascar, were investigated with two comparative molecular approaches. Compared to those of other muroid rodents representing Murinae, Cricetinae, Cricetomyinae. Arvicolinae, and Sigmodontinae, complete sequences of the 12S rRNA mitochondrial gene suggest that the Malagasy nesomyinesMacrotarsomys andNesomys are monophyletic and that their sister-group among the taxa analyzed isCricetomys. A limited series of DNA/DNA hybridization experiments extends these observations to a third nesomyine genus,Eliurus, and a second cricetomyine taxon,Saccostomus. By relating the amounts of overall genomic divergence with geological time as calibrated by theMus/Rattus dichotomy estimated at 12–14 My, the oldest within-Nesomyinae dichotomy is estimated to be 10.8 to 12.6 My. Thus, these three genera of Malagasy nesomyine rodents appear to be a rather ancient offshoot from African ancestors whose Recent relatives are Cricetomyinae. This preliminary observation should be confirmed by sampling additional genera of nesomyines and additional representatives for other subfamilies of African muroids.  相似文献   

7.

Background  

Species of the Drosophila obscura species group (e.g., D. pseudoobscura, D. subobscura) have served as favorable models in evolutionary studies since the 1930's. Despite numbers of studies conducted with varied types of data, the basal phylogeny in this group is still controversial, presumably owing to not only the hypothetical 'rapid radiation' history of this group, but also limited taxon sampling from the Old World (esp. the Oriental and Afrotropical regions). Here we reconstruct the phylogeny of this group by using sequence data from 6 loci of 21 species (including 16 Old World ones) covering all the 6 subgroups of this group, estimate the divergence times among lineages, and statistically test the 'rapid radiation' hypothesis.  相似文献   

8.

Background  

Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including matR, two plastid genes (rbcL, atpB), and one nuclear gene (18S rDNA).  相似文献   

9.
Alopoglossidae is a family of Neotropical lizards composed of 23 species allocated in two genera (Alopoglossus and Ptychoglossus). There is a lack of knowledge about the phylogenetic relationships and systematics of this family. Published phylogenies that include alopoglossid species have very low taxon coverage within the family, and are usually based on limited character sampling. Considering these shortcomings, we infer the phylogenetic relationships of Alopoglossidae—including all but one species in the family—based on the combined analyses of DNA sequences and morphological characters. We use four loci (the mitochondrial 12S, 16S and ND4; the nuclear C-mos) and a matrix of 143 phenotypic characters from scutellation, tongue morphology, hemipenis morphology, and osteology. The dataset is analyzed with Maximum Parsimony, with four alternative weighting schemes: three under Extended Implied Weighting, and one with equal weighting. The respective resulting topologies are compared in a sensitivity analysis framework. Our analyses support the paraphyly of Ptychoglossus, with Alopoglossus nested within it. We provide an updated classification for the family, where Ptychoglossus Boulenger, 1890 is considered a junior synonym of Alopoglossus Boulenger, 1885.  相似文献   

10.
The most extensive combined phylogenetic analyses of the subclass Marchantiidae yet undertaken was conducted on the basis of morphological and molecular data. The morphological data comprised 126 characters and 56 species. Taxonomic sampling included 35 ingroup species with all genera and orders of Marchantiidae sampled, and 21 outgroup species with two genera of Blasiidae (Marchantiopsida), 15 species of Jungermanniopsida (the three subclasses represented) and the three genera of Haplomitriopsida. Takakia ceratophylla (Bryophyta) was employed to root the trees. Character sampling involved 92 gametophytic and 34 sporophytic traits, supplemented with ten continuous characters. Molecular data included 11 molecular markers: one nuclear ribosomal (26S), three mitochondrial genes (nad1, nad5, rps3) and seven chloroplast regions (atpB, psbT‐psbH, rbcL, ITS, rpoC1, rps4, psbA). Searches were performed under extended implied weighting, weighting the character blocks against the average homoplasy. Clade stability was assessed across three additional weighting schemes (implied weighting corrected for missing entries, standard implied weighting and equal weighting) in three datasets (molecular, morphological and combined). The contribution from different biological phases regarding node recovery and diagnosis was evaluated. Our results agree with many of the previous studies but cast doubt on some relationships, mainly at the family and interfamily level. The combined analyses underlined the fact that, by combining data, taxonomic enhancements could be achieved regarding taxon delimitation and quality of diagnosis. Support values for many clades of previous molecular studies were improved by the addition of morphological data. The long‐held assumption that morphology may render spurious or low‐quality results in this taxonomic group is challenged. The morphological trends previously proposed are re‐evaluated in light of the new phylogenetic scheme.  相似文献   

11.
Johnson, R. F. (2010). Breaking family ties: taxon sampling and molecular phylogeny of chromodorid nudibranchs (Mollusca, Gastropoda). —Zoologica Scripta, 40, 137–157. Although researchers have debated the monophyly of the diverse chromodorid nudibranchs (Chromodorididae) for over 100 years, the monophyly of this family has not been properly tested. Recent morphological and molecular phylogenetic studies have added to the debate, but have not used appropriate methods to resolve this issue. I investigate how outgroup choice and taxon sampling influences tree topology and in turn the recovery of chromodorid monophyly. As a demonstration of these potential methodological problems, I then present phylogenies resulting from different taxon‐sampling schemes using the same molecular data. Taxon sampling has a strong influence on the resulting phylogenies. With comprehensive taxon sampling and outgroup selection, Cadlina is not a member of the Chromodorididae. The chromodorid nudibranchs without Cadlina are monophyletic and possibly sister to the Actinocyclidae. Additionally, I found, for the first time, support for most current family groupings in the Doridoidea. I propose a new classification in which Cadlina is not considered a member of the Chromodorididae. Instead, I resurrect the family name Cadlinidae to include the genera Cadlina and Aldisa.  相似文献   

12.
13.

Background  

Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported.  相似文献   

14.
Africa, inclusive of the West Indian Ocean islands, harbours 11 of the world's 16 extant testudinid genera. Fossil records indicate that testudinids originated in Asia and dispersed first to North America and Europe (Early Eocene) and later to Africa (Late Eocene). We used mitochondrial (1870 bp) and nuclear (1416 bp) DNA sequence data to assess whether molecular data support the late cladogenesis of Southern African testudinid lineages. Our results revealed strong support for the monophyly of a clade consisting of Kinixys, the two Malagasy genera and four Southern African genera (Psammobates, Stigmochelys, Homopus and Chersina). Kinixys diverged from this clade in the Late Palaeocene, suggesting that testudinids occupied Africa at an earlier date than indicated by fossil records. The Southern African tortoises consist of three, strongly supported clades: Psammobates + Stigmochelys; the five‐toed Homopus + Chersina; and the four‐toed Homopus. Due to the paraphyly of Homopus, we propose the taxonomic resurrection of Chersobius for the five‐toed Homopus species (boulengeri, signatus and solus). Cladogenesis at the genus level occurred mainly in the Eocene, with Chersina and Chersobius diverging in the Oligocene. The latter divergence coincided with species‐level radiations within Homopus (areolatus and femoralis) and Psammobates (oculifer, geometricus and tentorius). Our phylogeny could not resolve relationships within Psammobates, indicating rapid speciation between the Late Oligocene and Early Miocene. The Chersobius species were the last to diverge in the Early to Mid‐Miocene. By the Mid‐Miocene, P. tentorius started to differentiate into four lineages instead of the three recognized subspecies: P. t. tentorius, P. t. trimeni and two P. t. verroxii subclades occurring north and south of the Orange River, respectively. Terminal radiations in several taxa suggest the existence of cryptic species and a more diverse tortoise fauna than currently recognized. Factors contributing to this diversity may include the early origin of African testudinids and climatic fluctuations over a heterogeneous landscape.  相似文献   

15.

Background  

Quantitative real-time polymerase chain reaction (RT-qPCR) is valuable for studying the molecular events underlying physiological and behavioral phenomena. Normalization of real-time PCR data is critical for a reliable mRNA quantification. Here we identify reference genes to be utilized in RT-qPCR experiments to normalize and monitor the expression of target genes in the brain of the cephalopod mollusc Octopus vulgaris, an invertebrate. Such an approach is novel for this taxon and of advantage in future experiments given the complexity of the behavioral repertoire of this species when compared with its relatively simple neural organization.  相似文献   

16.
Pollen morphology from 143 collections representing 11 genera and 75 species of native South American Convolvulaceae was analyzed with LM and SEM. Exine structure and sculpture allow to distinguish three main types, in two of these types some subtypes were recognized. 1) Tectate, microechinate-perforate exine, with ramified columellae. On the basis of apertures three subtypes were distinguished: tricolpate in Aniseia, Bonamia, Convolvulus, Cressa, Dichondra, Merremia and Jacquemontia blanchetii; penta-hexacolpate in Merremia umbellata; and pantoporate with elliptic and circular pores, in Calystegia. 2) Tectate, microechinate-perforate exine with microspines and single columellae in concordant pattern, relates pantocolpate pollen of Jacquemontia and Evolvulus. From pollen data generic status of J. blanchetii should be considered. 3) Semitectate, echinate or gemmate, microechinate-microreticulate exine with single columellae is exclusive of pantoporate pollen of Ipomoea. Four subtypes were recognized in this genera, which are discussed in relation to Austins infrageneric classification.  相似文献   

17.
The Polleniidae (Diptera) are a family of flies best known for species of the genus Pollenia, which overwinter inside human dwellings. Previously divided across the Calliphoridae, Tachinidae and Rhinophoridae, the polleniid genera have only recently been united. Several studies have utilized molecular data to analyse polleniid phylogenetic relationships, although all have suffered from low taxon sampling or insufficient phylogenetic signal in molecular markers. To alleviate these problems, we utilized two automated organellar genome extraction software, GetOrganelle and MitoFinder, to assemble mitogenomes from genome skimming data from 22 representatives of the polleniid genera: Dexopollenia, Melanodexia, Morinia, Pollenia and Xanthotryxus. From these analyses, we provide 14 new mitogenomes for the Polleniidae and perform phylogenetic analyses of 13 protein-coding mitochondrial genes using both maximum likelihood and Bayesian inference. Subfamilial phylogenetic relationships within the Polleniidae are interrogated and Pollenia is found to form a monophyletic clade sister to Melanodexia, Morinia and Dexopollenia, providing no evidence for the synonymisation of any of these genera. Our topology conflicts with previous morphology-based cladistic interpretations, with the amentaria, griseotomentosa, semicinerea and viatica species-groups resolving as non-monophyletic. We provide support for our topology through analysis of adult morphology and male and female terminalia, while identifying new diagnostic characters for some of the clades of the Pollenia. To test the validity of the current diagnostic morphology in the Polleniidae, newly assembled cytochrome C oxidase subunit 1 (COI) data are combined with a polleniid COI barcode reference library and analysed using the species delimitation software ASAP. COI barcodes support the current morphologically defined species within the Pollenia.  相似文献   

18.

Background  

Taxon sampling is a major concern in phylogenetic studies. Incomplete, biased, or improper taxon sampling can lead to misleading results in reconstructing evolutionary relationships. Several theoretical methods are available to optimize taxon choice in phylogenetic analyses. However, most involve some knowledge about the genetic relationships of the group of interest (i.e., the ingroup), or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications.  相似文献   

19.
Tintinnida is a diverse taxon that accommodates over 1,500 morphospecies, which is an important component of marine planktonic food webs. However, evolutionary relationships of tintinnids are poorly known because molecular data of most groups within this order are lacking. In our study, the small subunit (SSU) rRNA genes representing 10 genera, 5 families of Tintinnida were sequenced, including the first SSU rRNA gene sequences for Coxliella, Dadayiella, Epiplocyloides, and Protorhabdonella, and phylogenetic trees were constructed to assess their intergeneric relationships. Phylogenies inferred from different methods showed that (1) Three newly sequenced Eutintinnus species fell into Eutintinnus clade forming a sister group to the clade containing Amphorides, Steenstrupiella, Amphorellopsis, and Salpingella; (2) Surprisingly, the genetic distances between Amphorides amphora and Amphorellopsis acuta population 1 was even smaller than that between the two populations of Amphorellopsis acuta, casting doubt on the validity of Amphorides and Amphorellopsis as presently defined; (3) The SSU rRNA sequences of Dadayiella ganymedes and Parundella aculeata were almost identical. Therefore, Parundella ganymedes novel combination is proposed; (4) Coxliella, which is currently assigned within Metacylididae, branched instead with some Tintinnopsis species. Furthermore, the validation of Coxliella, which was considered to be a “questionable” genus, was confirmed based on evidences from morphology, ecology, and molecular data; (5) Protorhabdonella and Rhabdonella showed rather low intergeneric distance and grouped together with strong support suggesting that Rhabdonellidae is a well‐defined taxon; and (6) Epiplocyloides branched with species in Cyttarocylididae indicating their close relationship.  相似文献   

20.
We examine the phylogeography, phylogeny and taxonomy of hinge‐back tortoises using a comprehensive sampling of all currently recognized Kinixys species and subspecies and sequence data of three mitochondrial DNA fragments (2273 bp: 12S rRNA, ND4 + adjacent DNA coding for tRNAs, cytb) and three nuclear loci (2569 bp: C‐mos, ODC, R35). Combined and individual analyses of the two data sets using Bayesian and Maximum Likelihood methods suggest that the savannah species of Kinixys are paraphyletic with respect to the rainforest species K. homeana and K. erosa, and that the rainforest species may be derived from a savannah‐living ancestor. The previously recognized savannah species K. belliana was a conglomerate of three deeply divergent clades that we treat here as distinct species. We restrict the name K. belliana (Gray, 1830) to hinge‐back tortoises ranging from Angola to Burundi, while five‐clawed hinge‐back tortoises from the northernmost part of the formerly recognized range of K. belliana, together with four‐clawed tortoises from West Africa, are assigned to the species K. nogueyi (Lataste, 1886). These two species are allied to K. spekii, whereas Southeast African and Malagasy hinge‐back tortoises formerly lumped together with K. belliana represent the distinct species K. zombensis Hewitt, 1931, which is sister to K. lobatsiana. The latter two species together constitute the sister group of the rainforest species K. homeana and K. erosa. Mitochondrial data suggest that K. natalensis has a basal phylogenetic position in a clade embracing K. belliana sensu stricto, K. nogueyi and K. spekii, while nuclear data and the two data sets combined favour a sister group relationship of K. natalensis to all other hinge‐back tortoises. Phylogeographic structure is present in all wide‐ranging species and correlates in K. homeana and K. erosa with the Dahomey Gap and former rainforest refugia. The Malagasy population of K. zombensis is weakly differentiated from its South African conspecifics and further sampling is needed to determine whether there is support for the subspecific distinctness of Malagasy tortoises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号