首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms that control the fidelity of DNA replication are discussed. Data are reviewed for 3 steps in a fidelity pathway: nucleotide insertion, exonucleolytic proofreading, and extension from matched and mismatched 3′-primer termini. Fidelity mechanisms that involve predominately Km discrimination, Vmax discrimination, or a combination of the two are analyzed in the context of a simple model for fidelity. Each fidelity step is divided into 2 components, thermodynamics and kinetic. The thermodynamic component, which relates to free-energy differences between right and wrong base pair, is associated with a Km discrimination mechanism for polymerase. The kinetic component, which represents the enzyme's ability to select bases for insertion and excision to achieve fidelity greater than that availablek from base pairing free-energy differences, is associated with a Vmax discrimination mechanism for polymerase. Currently available fidelity data for nucleotide insertion and primer extension in the absence of proofreading appears to have relatively large Km and small Vmax components. An important complication can arise when analyzing data from polymerases containing an associated 3′-exonuclease activity. In the presence of proofreading, a Vmax discrimination mechanisms is likely to occur, but this may be the result of two Km discrimination mechanisms acting serially, one for nucleotide insertion and other for excision. Possible relationships between base pairing free energy differences measured in aqueous solution and those defined within the polymerase active cleft are considered in the context of the enzyme's ability to exclude water, at least partially, from the vicinity of its active site.  相似文献   

2.
DNA replication fidelity.   总被引:18,自引:0,他引:18  
  相似文献   

3.
DNA polymerases generally select the correct nucleotide from a pool of structurally similar molecules to preserve Watson-Crick base-pairing rules. We report the structure of DNA polymerase beta with DNA mismatches situated in the polymerase active site. This was achieved by using nicked product DNA that traps the mispair (template-primer, A-C or T-C) in the nascent base pair binding pocket. The structure of each mispair complex indicates that the bases do not form hydrogen bonds with one another, but form a staggered arrangement where the bases of the mispair partially overlap. This prevents closure/opening of the N subdomain that is believed to be required for catalytic cycling. The partially open conformation of the N subdomain results in distinct hydrogen bonding networks that are unique for each mispair. These structures define diverse molecular aspects of misinsertion that are consistent with the induced-fit model for substrate specificity.  相似文献   

4.
Arora K  Beard WA  Wilson SH  Schlick T 《Biochemistry》2005,44(40):13328-13341
Molecular dynamics simulations of DNA polymerase (pol) beta complexed with different incorrect incoming nucleotides (G x G, G x T, and T x T template base x incoming nucleotide combinations) at the template-primer terminus are analyzed to delineate structure-function relationships for aberrant base pairs in a polymerase active site. Comparisons, made to pol beta structure and motions in the presence of a correct base pair, are designed to gain atomically detailed insights into the process of nucleotide selection and discrimination. In the presence of an incorrect incoming nucleotide, alpha-helix N of the thumb subdomain believed to be required for pol beta's catalytic cycling moves toward the open conformation rather than the closed conformation as observed for the correct base pair (G x C) before the chemical reaction. Correspondingly, active-site residues in the microenvironment of the incoming base are in intermediate conformations for non-Watson-Crick pairs. The incorrect incoming nucleotide and the corresponding template residue assume distorted conformations and do not form Watson-Crick bonds. Furthermore, the coordination number and the arrangement of ligands observed around the catalytic and nucleotide binding magnesium ions are mismatch specific. Significantly, the crucial nucleotidyl transferase reaction distance (P(alpha)-O3') for the mismatches between the incoming nucleotide and the primer terminus is not ideally compatible with the chemical reaction of primer extension that follows these conformational changes. Moreover, the extent of active-site distortion can be related to experimentally determined rates of nucleotide misincorporation and to the overall energy barrier associated with polymerase activity. Together, our studies provide structure-function insights into the DNA polymerase-induced constraints (i.e., alpha-helix N conformation, DNA base pair bonding, conformation of protein residues in the vicinity of dNTP, and magnesium ions coordination) during nucleotide discrimination and pol beta-nucleotide interactions specific to each mispair and how they may regulate fidelity. They also lend further support to our recent hypothesis that additional conformational energy barriers are involved following nucleotide binding but prior to the chemical reaction.  相似文献   

5.
Mutational analysis has previously indicated that D83 and E98 residues are essential for DNA cleavage activity and presumably chelate a Mg2+ ion at the active site of MunI restriction enzyme. In the absence of metal ions, protonation of an ionizable residue with a pKa > 7.0, most likely one of the active site carboxylates, controls the DNA binding specificity of MunI [Lagunavicius, A., Grazulis, S., Balciunaite, E., Vainius, D., and Siksnys, V. (1997) Biochemistry 36, 11093-11099.]. Thus, competition between H+ and Mg2+ binding at the active site of MunI presumably plays an important role in catalysis/binding. In the present study we have identified elementary steps and intermediates in the reaction pathway of plasmid DNA cleavage by MunI and elucidated the effect of pH and Mg2+ ions on the individual steps of the DNA cleavage reaction. The kinetic analysis indicated that the multiple-turnover rate of plasmid cleavage by MunI is limited by product release throughout the pH range 6.0-9.3. Quenched-flow experiments revealed that open circle DNA is an obligatory intermediate in the reaction pathway. Under optimal reaction conditions, open circle DNA remains bound to the MunI; however it is released into the solution at low [MgCl2]. Rate constants for the phoshodiester bond hydrolysis of the first (k1) and second (k2) strand of plasmid DNA at pH 7.0 and 10 mM MgCl2 more than 100-fold exceed the kcat value which is limited by product dissociation. The analysis of the pH and [Mg2+] dependences of k1 and k2 revealed that both H+ and Mg2+ ions compete for the binding to the same residue at the active site of MunI. Thus, the decreased rate of phosphodiester hydrolysis by MunI at pH < 7.0 may be due to the reduction of affinity for the Mg2+ binding at the active site. Kinetic analysis of DNA cleavage by MunI yielded estimates for the association-dissociation rate constants of enzyme-substrate complex and demonstrated the decreased stability of the MunI-DNA complex at pH values above 8.0.  相似文献   

6.
Error rates for conventionally purified DNA polymerase-alpha from calf thymus, chicken, and human sources have been reported to be one in 10,000 to one in 40,000 nucleotides incorporated. Isolation of polymerase-alpha by immunoaffinity chromatography yields a multiprotein high molecular weight replication complex that contains an associated DNA primase (Wong, S. W., Paborsky, L. R., Fisher, P. A., Wang, T. S-F., and Korn, D. (1986) J. Biol. Chem. 261, 7958-7968). We have isolated DNA polymerase-primase complexes from calf thymus, from a human lymphoblast cell line (TK-6), and from Chinese hamster lung cells (V-79) using two different methods of immunoaffinity chromatography. These enzyme complexes are 12- to 20-fold more accurate than conventionally purified calf thymus DNA polymerase-alpha when assayed using the phi X174am3 fidelity assay; estimated error rates are one in 460,000 to one in 830,000 nucleotides incorporated when the enzyme complex is freshly isolated. The polymerase-primase complex from calf thymus exhibited no detectable 3'----5' exonuclease activity using a heteroduplex substrate containing a single 3'-terminal mismatched nucleotide. Upon prolonged storage at -70 degrees C, the error rate of the immunoaffinity-purified calf thymus DNA polymerase-primase complex increases to about one in 50,000 nucleotides incorporated, an error rate similar to that exhibited by conventional isolates of DNA polymerase-alpha.  相似文献   

7.
Proofreading is the primary guardian of DNA polymerase fidelity. New work has revealed that polymerases with intrinsic proofreading activity may cooperate with non-proofreading polymerases to ensure faithful DNA replication.  相似文献   

8.
We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen-bonding ability in the nascent pair, the efficiency (k(pol)/Kd) of the polymerase reaction is decreased by 30-fold, affecting the ground state (Kd) and transition state (k(pol)) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen-bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most of the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer-terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen-bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. In contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions and more dependent upon hydrogen bonding between base-paired partners.  相似文献   

9.
DNA polymerase insertion fidelity. Gel assay for site-specific kinetics   总被引:31,自引:0,他引:31  
A quantitative assay based on gel electrophoresis is described to measure nucleotide insertion kinetics at an arbitrary DNA template site. The assay is used to investigate kinetic mechanisms governing the fidelity of DNA synthesis using highly purified Drosophila DNA polymerase alpha holoenzyme complex and M13 primer-template DNA. Km and Vmax values are reported for correct insertion of A and misinsertion of G, C, and T opposite a single template T site. The misinsertion frequencies are 2 X 10(-4) for G-T and 5 X 10(-5) for both C-T and T-T relative to normal A-T base pairs. The dissociation constant of the polymerase-DNA-dNTP complex, as measured by Km, plays a dominant role in determining the rates of forming right and wrong base pairs. Compared with Km for insertion of A opposite T (3.7 +/- 0.7 microM), the Km value is 1100-fold greater for misinsertion of G opposite T (4.2 +/- 0.4 mM), and 2600-fold greater for misinsertion of either C or T opposite T (9.8 +/- 4.2 mM). These Km differences indicate that in the enzyme binding site the stability of A-T base pairs is 4.3 kcal/mol greater than G-T pairs and 4.9 kcal/mol greater than C-T or T-T pairs. In contrast to the large differences in Km, differences in Vmax are relatively small. There is only a 4-fold reduction in Vmax for insertion of G opposite T and an 8-fold reduction for C or T opposite T, compared with the correct insertion of A. For the specific template T site investigated, the nucleotide insertion fidelity for Drosophila polymerase alpha seems to be governed primarily by a Km discrimination mechanism.  相似文献   

10.
Two distinct mechanisms of action for intercalating agents have been delineated: one leading to the production of frameshift misincorporations and the other leading to the production of single-base substitutions. Addition misincorporations are competitive with respect to DNA template (a measure of classical intercalation) but are not competitive with respect to deoxynucleotide substrates. Single-base substitutions are not competitive with template, polymerase, or deoxynucleotide as tested individually, but are proportional to the absolute drug concentration, indicating a ternary complex involving intercalator, polymerase, and template. Increased frequencies of single-base substitutions have not been considered as a general property of intercalators. Using a mutant phi X174 DNA, we demonstrate that intercalators also induce single-base substitutions with natural DNA templates. Reversion of am3 phi X174 DNA occurs only by single-base substitutions at position 587; this is increased 8-fold when the DNA is copied in vitro in the presence of intercalators.  相似文献   

11.
A diploid human genome contains approximately six billion nucleotides. This enormous amount of genetic information can be replicated with great accuracy in only a few hours. However, because DNA strands are oriented antiparallel while DNA polymerization only occurs in the 5'----3' direction, semi-conservative replication of double-stranded DNA is an asymmetric process, i.e., there is a leading and a lagging strand. This provides a considerable opportunity for non-random error rates, because the architecture of the two strands as well as the DNA polymerases that replicate them may be different. In addition, the proteins that start or finish chains may well be different from those that perform the bulk of chain elongation. Furthermore, while replication fidelity depends on the absolute and relative concentrations of the four deoxyribonucleotide precursors, these are not equal in vivo, not constant throughout the cell cycle, and not necessarily equivalent in all cell types. Finally, the fidelity of DNA synthesis is sequence-dependent and the eukaryotic nuclear genome is a heterogeneous substrate. It contains repetitive and non-repetitive sequences and can actually be considered as two subgenomes that differ in nucleotide composition and gene content and that replicate at different times. The effects that each of these asymmetries may have on error rates during replication of the eukaryotic genome are discussed.  相似文献   

12.
M T Washington  L Prakash  S Prakash 《Cell》2001,107(7):917-927
DNA polymerase eta (Poleta) is unique among eukaryotic DNA polymerases in its proficient ability to replicate through distorting DNA lesions, and Poleta synthesizes DNA with a low fidelity. Here, we use pre-steady-state kinetics to investigate the mechanism of nucleotide incorporation by Poleta and show that it utilizes an induced-fit mechanism to selectively incorporate the correct nucleotide. Poleta discriminates poorly between the correct and incorrect nucleotide at both the initial nucleotide binding step and at the subsequent induced-fit conformational change step, which precedes the chemical step of phosphodiester bond formation. This property enables Poleta to bypass lesions with distorted DNA geometries, and it bestows upon the enzyme a low fidelity.  相似文献   

13.
Procaryotic DNA polymerases contain an associated 3'----5' exonuclease activity which provides a proofreading function and contributes substantially to replication fidelity. DNA polymerases of the eucaryotic herpes-type viruses contain similar associated exonuclease activities. We have investigated the fidelity of polymerases purified from wild type herpes simplex virus, as well as from mutator and antimutator strains. On synthetic templates, the herpes enzymes show greater relative exonuclease activities, and greater ability to excise a terminal mismatched base, than procaryotic DNA polymerases which proofread. On a phi X174 natural DNA template, the herpes enzymes are more accurate than purified eucaryotic DNA polymerases; the error rate is similar to E. coli polymerase I. However, conditions which abnegate proofreading by E. coli polymerase I have little effect on the herpes enzymes. We conclude that either these viral polymerases are accurate in the absence of proofreading, or the conditions examined have little effect on proofreading by the herpes DNA polymerases.  相似文献   

14.
The fidelity of DNA synthesis with purified DNA polymerase alpha and beta from human placenta has been studied. With poly[d(A-T)] as the template-primer and Mg2+ as the metal activator, DNA polymerase alpha incorporates 1 mol of dGMP for every 6,000 to 12,000 mol of complementary nucleotides polymerized. Under the same conditions, DNA polymerase beta is more accurate, the error rate being 1/20,000 to 1/60,000. This greater accuracy of DNA polymerase beta is observed with a variety of homopolymer templates. With both enzymes, substitution of Mg2+ with activating concentrations of Mn2+ or Co2+ enhances the frequency of misincorporation. At greater than activating concentrations of Mn2+ and Co2+, there is an inhibition of complementary nucleotide incorporation, further increasing the frequency of misincorporation. Nearest neighbor analysis of the products synthesized with both enzymes indicates that the noncomplementary nucleotides are incorporated predominantly as single base substitutions. The greater accuracy of DNA polymerase beta over DNA polymerase alpha should be considered in relationship to their possible roles in DNA replication and repair.  相似文献   

15.
Fiala KA  Abdel-Gawad W  Suo Z 《Biochemistry》2004,43(21):6751-6762
DNA polymerase lambda (Pollambda), a member of the X-family DNA polymerases, possesses an N-terminal BRCT domain, a proline-rich domain, and a C-terminal polymerase beta-like domain (tPollambda). In this paper, we determined a minimal kinetic mechanism and the fidelity of tPollambda using pre-steady-state kinetic analysis of the incorporation of a single nucleotide into a one-nucleotide gapped DNA substrate, 21-19/41-mer (primer-primer/template). Our kinetic studies revealed an incoming nucleotide bound to the enzyme.DNA binary complex at a rate constant of 1.55 x 10(8) M(-1) s(-1) to form a ground-state ternary complex while the nucleotide dissociated from this complex at a rate constant of 300 s(-1). Since DNA dissociation from tPollambda (0.8 s(-1)) was less than 3-fold slower than polymerization, we measured saturation kinetics for all 16 possible nucleotide incorporations under single turnover conditions to eliminate the complication resulting from multiple turnovers. The fidelity of tPollambda was estimated to be in the range of 10(-2)-10(-4) and was sequence-dependent. Surprisingly, the ground-state binding affinity of correct (1.1-2.4 microM) and incorrect nucleotides (1.4-8.4 microM) was very similar while correct nucleotides (3-6 s(-1)) were incorporated much faster than incorrect nucleotides (0.001-0.2 s(-1)). Interestingly, the misincorporation of dGTP opposite a template base thymine (0.2 s(-1)) was more rapid than all other misincorporations, leading to the lowest fidelity (3.2 x 10(-2)) among all mismatched base pairs. Additionally, tPollambda was found to possess weak strand-displacement activity during polymerization. These biochemical properties suggest that Pollambda likely fills short-patched DNA gaps in base excision repair pathways and participates in mammalian nonhomologous end-joining pathways to repair double-stranded DNA breaks.  相似文献   

16.
Xie F  Qureshi SH  Papadakos GA  Dupureur CM 《Biochemistry》2008,47(47):12540-12550
Ester hydrolysis is one of the most ubiquitous reactions in biochemistry. Many of these reactions rely on metal ions for various mechanistic steps. A large number of metal-dependent nucleases have been crystallized with two metal ions in their active sites. In spite of an ongoing discussion about the roles of these metal ions in nucleic acid hydrolysis, there are very few studies which examine this issue using the native cofactor Mg(II) and global fitting of reaction progress curves. As part of a comprehensive study of the representative homodimeric PvuII endonuclease, we have collected single-turnover DNA cleavage data as a function of Mg(II) concentration and globally fit these data to a number of models which test various aspects of the metallonuclease mechanism. DNA association rate constants are approximately 100-fold higher in the presence of the catalytically nonsupportive Ca(II) versus the native cofactor Mg(II), highlighting an interesting cofactor difference. A pathway in which metal ions bind prior to DNA is kinetically favored. The data fit well to a model in which both one and two metal ions per active site (EM(2)S and EM(4)S, respectively) support cleavage. Interestingly, the cleavage rate for EM(2)S is approximately 100-fold slower than that displayed by EM(4)S. Collectively, these data indicate that for the PvuII system, catalysis involving one metal ion per active site can indeed occur, but that a more efficient two-metal ion mechanism can be operative under saturating metal ion (in vitro) conditions.  相似文献   

17.
Mechanisms for the fidelity of DNA replication in eucaryotes are not adequately understood. Certain hypotheses can be tested by examining whether the first nucleotide inserted is incorporated with a significantly higher error rate than subsequent nucleotides. Using synthetic oligodeoxynucleotides, we have measured the effect of primer position on single-base misinsertion frequencies at an amber site in phi X174 DNA. Our results show a lack of position effect, indicating that processivity and the most direct "energy relay" proofreading mechanisms are not important determinants in eucaryotic replication fidelity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号