首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wzc(CPS) is a tyrosine autokinase essential for the assembly of a high-molecular-weight (HMW) group 1 capsular polysaccharide (CPS) in Escherichia coli. Homologues of Wzc participate in the formation of CPS and exopolysaccharides in a variety of gram-positive and gram-negative bacteria. Phosphorylation of tyrosine residues in the Wzc(CPS) C terminus is essential for HMW CPS assembly. Overexpression of Wzb(CPS) (phosphatase) in a wild-type background caused a 3.7-fold decrease in the amount of cell-associated K30 CPS produced, confirming the importance of Wzc(CPS) phosphorylation for capsule assembly. In this study, the tyrosine-rich region was dissected in an attempt to identify residues critical for Wzc(CPS) phosphorylation and/or capsule expression. Site-directed mutagenesis demonstrated that no single tyrosine residue in this region is sufficient for detectable phosphorylation of Wzc(CPS) in vivo or for HMW CPS expression. Furthermore, no single tyrosine residue is essential for phosphorylation or capsule assembly, since removal of any one tyrosine residue has no detectable effect. Altering combinations of tyrosine residues (from two to five) led to Wzc(CPS) derivatives that were still competent for phosphorylation but that could not support assembly of HMW CPS, showing that phosphorylation of Wzc per se is not an accurate measure of its ability to function in capsule assembly. One interpretation of these data is that the overall level of phosphorylation in this region, rather than the precise combination of residues accessible to phosphorylation, is important for the activity of Wzc(CPS). Tyrosine 569, a residue shown to modulate the in vitro phosphorylation of Wzc(CA) from E. coli K-12, was also mutated. The derivative with this mutation still functioned in capsule assembly. Quantitation of K30(CPS) from this mutant revealed no difference in the amount of polymer produced. Finally, dithiobis(succinimidylpropionate) cross-linking was used to confirm that Wzc(CPS) forms complexes in vivo, independent of the phosphorylation state of the protein.  相似文献   

2.
Group 1 capsular polysaccharides (CPSs) of Escherichia coli and some loosely cell-associated exopolysaccharides (EPSs), such as colanic acid, are assembled by a Wzy-dependent polymerization system. In this biosynthesis pathway, Wza, Wzb, and Wzc homologues are required for surface expression of wild-type CPS or EPS. Multimeric complexes of Wza in the outer membrane are believed to provide a channel for polymer export; Wzc is an inner membrane tyrosine autokinase and Wzb is its cognate phosphatase. This study was performed to determine whether the Wza, Wzb, and Wzc proteins for colanic acid expression in E. coli K-12 could function in the E. coli K30 prototype group 1 capsule system. When expressed together, colanic acid Wza, Wzb, and Wzc could complement a wza-wzb-wzc defect in E. coli K30, suggesting conservation in their collective function in Wzy-dependent CPS and EPS systems. Expressed individually, colanic acid Wza and Wzb could also function in K30 CPS expression. In contrast, the structural requirements for Wzc function were more stringent because colanic acid Wzc could restore translocation of K30 CPS to the cell surface only when expressed with its cognate Wza protein. Chimeric colanic acid-K30 Wzc proteins were constructed to further study this interaction. These proteins could restore K30 biosynthesis but were unable to couple synthesis to export. The chimeric protein comprising the periplasmic domain of colanic acid Wzc was functional for effective K30 CPS surface expression only when coexpressed with colanic acid Wza. These data highlight the importance of Wza-Wzc interactions in group 1 CPS assembly.  相似文献   

3.
Many Gram-positive and Gram-negative bacteria utilize polysaccharide surface layers called capsules to evade the immune system; consequently, the synthesis and export of the capsule are a potential therapeutic target. In Escherichia coli K-30, the integral membrane tyrosine autokinase Wzc and the cognate phosphatase Wzb have been shown to be key for both synthesis and assembly of capsular polysaccharides. In the Gram-positive bacterium Streptococcus pneumoniae, the CpsCD complex is analogous to Wzc and the phosphatase CpsB is the corresponding cognate phosphatase. The phosphatases are known to dephosphorylate their corresponding autokinases, yet despite their functional equivalence, they share no sequence homology. We present the structure of Wzb in complex with phosphate and high-resolution structures of apo-CpsB and a phosphate-complexed CpsB. We show that both proteins are active toward Wzc and thereby demonstrate that CpsB is not specific for CpsCD. CpsB is a novel enzyme and represents the first solved structure of a tyrosine phosphatase from a Gram-positive bacterium. Wzb and CpsB have completely different structures, suggesting that they must operate by very different mechanisms. Although the mechanism of Wzb can be inferred from previous studies, CpsB appears to have a tyrosine phosphatase mechanism not observed before. We propose a chemical mechanism for CpsB based on site-directed mutagenesis and structural data.  相似文献   

4.
Wzc proteins are tyrosine autokinases. They are found in some important bacterial pathogens of humans and livestock as well as plant-associated bacteria, and are often encoded within gene clusters determining synthesis and assembly of capsular and extracellular polysaccharides. Autophosphorylation of Wzc(cps) is essential for assembly of the serotype K30 group 1 capsule in Escherichia coli O9a:K30, although a genetically unlinked Wzc(cps)-homologue (Etk) can also participate with low efficiency. While autophosphorylation of Wzc(cps) is required for assembly of high molecular weight K30 capsular polysaccharide, it is not essential for either the synthesis of the K30 repeat units or for activity of the K30 polymerase enzyme. Paradoxically, the cognate phosphotyrosine protein phosphatase for Wzc(cps), Wzb(cps), is also required for capsule expression. The tyrosine-rich domain at the C terminus of Wzc(cps) was identified as the site of phosphorylation and autophosphorylation of Wzc requires a functional Walker A motif. Intermolecular transphosphorylation of Wzc(cps) was detected in strains expressing a combination of mutant Wzc(cps) derivatives. The N- and C-terminal domains of Wzc(cps) were expressed independently to mimic the situation found naturally in Gram-positive bacteria. In this format, both domains were required for phosphorylation of the Wzc(cps) C terminus, and for capsule assembly. Regulation by a post-translational phosphorylation event represents a new dimension in the assembly of bacterial cell-surface polysaccharides.  相似文献   

5.
The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the bacterial cell surface are not well understood. The Wza protein was shown previously to be required for the formation of the prototype group 1 capsule structure on the surface of Escherichia coli serotype K30 (Drummelsmith, J., and Whitfield, C. (2000) EMBO J. 19, 57-66). Wza is a conserved outer membrane lipoprotein that forms multimers adopting a ringlike structure, and collective evidence suggests a role for these structures in the export of capsular polymer across the outer membrane. Wza was purified in the native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza protein. Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical subunits. A derivative of Wza (Wza*) in which the original signal sequence was replaced with that from OmpF showed that the native acylated N terminus of Wza is critical for formation of normal multimeric structures and for their competence for CPS assembly, but not for targeting Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was not detected on the cell surface. Chemical cross-linking of intact cells suggested formation of a transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase Wzc.  相似文献   

6.
Autophosphorylation of protein-tyrosine kinases (PTKs) involved in exopolysaccharide and capsular polysaccharide biosynthesis and transport has been observed in a number of Gram-negative and Gram-positive bacteria. However, besides their own phosphorylation, little is known about other substrates targeted by these protein-modifying enzymes. Here, we present evidence that the protein-tyrosine kinase Wzc of Escherichia coli is able to phosphorylate an endogenous enzyme, UDP-glucose dehydrogenase (Ugd), which participates in the synthesis of the exopolysaccharide colanic acid. The process of phosphorylation of Ugd by Wzc was shown to be stimulated by previous autophosphorylation of Wzc on tyrosine 569. The phosphorylation of Ugd was demonstrated to actually occur on tyrosine and result in a significant increase of its dehydrogenase activity. In addition, the phosphotyrosine-protein phosphatase Wzb, which is known to effectively dephosphorylate Wzc, exhibited only a low effect, if any, on the dephosphorylation of Ugd. These data were related to the recent observation that two other UDP-glucose dehydrogenases have been also shown to be phosphorylated by a PTK in the Gram-positive bacterium Bacillus subtilis. Comparative analysis of the activities of PTKs from Gram-negative and Gram-positive bacteria showed that they are regulated by different mechanisms that involve, respectively, either the autophosphorylation of kinases or their interaction with a membrane protein activator.  相似文献   

7.
In bacteria, several proteins have been shown to autophosphorylate on tyrosine residues, but little is known on the molecular mechanism of this modification. To get more information on this matter, we have analyzed in detail the phosphorylation of a particular autokinase, protein Wzc, from Escherichia coli K12. The analysis of the hydropathic profile of this protein indicates that it is composed of two main domains: an N-terminal domain, including two transmembrane alpha-helices, and a C-terminal cytoplasmic domain. The C-terminal domain alone can undergo autophosphorylation and thus appears to harbor the protein-tyrosine kinase activity. By contrast, the N-terminal domain is not phosphorylated when incubated either alone or in the presence of the C-domain, and does not influence the extent of phosphorylation of the C-domain. The C-domain contains six different sites of phosphorylation. Among these, five are located at the C-terminal end of the molecule in the form of a tyrosine cluster (Tyr(708), Tyr(710), Tyr(711), Tyr(713), and Tyr(715)), and one site is located upstream, at Tyr(569). The Tyr(569) residue can autophosphorylate through an intramolecular process, whereas the tyrosine cluster cannot. The phosphorylation of Tyr(569) results in an increased protein kinase activity of Wzc, which can, in turn, phosphorylate the five terminal tyrosines through an intermolecular process. It is concluded that protein Wzc autophosphorylates by using a cooperative two-step mechanism that involves both intra- and interphosphorylation. This mechanism may be of biological significance in the signal transduction mediated by Wzc.  相似文献   

8.
In Streptococcus pneumoniae, the first four genes of the capsule locus (cpsA to cpsD) are common to most serotypes. By analysis of various in-frame deletion and site-directed mutants, the function of their gene products in capsular polysaccharide (CPS) biosynthesis was investigated. We found that while CpsB, C and D are essential for encapsulation, CpsA is not. CpsC and CpsD have similarity to the amino-terminal and carboxy-terminal regions, respectively, of the autophosphorylating protein-tyrosine kinase Wzc from Escherichia coli. Alignment of CpsD with Wzc and other related proteins identified conserved Walker A and B sequence motifs and a tyrosine rich domain close to the carboxy-terminus. We have shown that CpsD is also an autophosphorylating protein-tyrosine kinase and that point mutations in cpsD affecting either the ATP-binding domain (Walker A motif) or the carboxy-terminal [YGX]4 repeat domain eliminated tyrosine phosphorylation of CpsD. We describe, for the first time, the phenotypic impact of these two mutations on polysaccharide production and show that they affect CPS production differently. Whereas a mutation in the Walker A motif resulted in loss of encapsulation, mutation of the tyrosines in the [YGX]4 repeat domain resulted in an apparent increase in encapsulation and a mucoid phenotype. These data suggest that autophosphorylation of CpsD at tyrosine attenuates its activity and reduces the level of encapsulation. Additionally, we demonstrated that CpsC is required for CpsD tyrosine phosphorylation and that CpsB influences dephosphorylation of CpsD. These results are consistent with CpsD tyrosine phosphorylation acting to negatively regulate CPS production. This has implications for the function of CpsC/CpsD homologues in both Gram-positive and Gram-negative bacteria and provides a mechanism to explain regulation of CPS production during pathogenesis.  相似文献   

9.
Capsular polysaccharides are well‐established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine‐kinases, named BY‐kinases. However, the accurate functioning of these tyrosine‐kinases remains unknown. Here, we report the crystal structure of the non‐phosphorylated cytoplasmic domain of the tyrosine‐kinase Wzc from Escherichia coli in complex with ADP showing that it forms a ring‐shaped octamer. Mutational analysis demonstrates that a conserved EX2RX2R motif involved in subunit interactions is essential for polysaccharide export. We also elucidate the role of a putative internal regulatory tyrosine and we show that BY‐kinases from proteobacteria autophosphorylate on their C‐terminal tyrosine cluster via a single‐step intermolecular mechanism. This structure‐function analysis also allows us to demonstrate that two different parts of a conserved basic region called the RK‐cluster are essential for polysaccharide export and for kinase activity respectively. Based on these data, we revisit the dichotomy made between BY‐kinases from proteobacteria and firmicutes and we propose a unique process of oligomerization and phosphorylation. We also reassess the function of BY‐kinases in the capsular polysaccharide assembly machinery.  相似文献   

10.
The phosphorylation of proteins at tyrosine residues is known to play a key role in the control of numerous fundamental processes in animal systems. In contrast, the biological significance of protein-tyrosine phosphorylation in bacteria, which has only been recognised recently, is still unclear. Here, we have analysed the role in Escherichia coli cells of an autophosphorylating protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb, by performing knock-out experiments on the corresponding genes, wzc and wzb, and looking at the metabolic consequences induced. The results demonstrate that the phosphorylation of Wzc, as regulated by Wzb, is directly connected with the production of a particular capsular polysaccharide, colanic acid. Thus, when Wzc is phosphorylated on tyrosine, no colanic acid is synthesised by bacteria, but when dephosphorylated by Wzb, colanic acid is produced. This process is rather specific to the pair of proteins Wzc/Wzb. Indeed, a much lesser effect, if any, on colanic acid synthesis is observed when knock-out experiments are performed on another pair of genes, etk and etp, which also encode respectively a protein-tyrosine kinase, Etk, and a phosphotyrosine-protein phosphatase, Etp, in E. coli. In addition, the analysis of the phosphorylation reaction at the molecular level reveals differences between Gram-negative and Gram-positive bacteria, namely in the number of protein components required for this reaction to occur.  相似文献   

11.
Entire hydras or tentacles were prepared for electron microscopy as described in the preceding paper. The stenotele capsule has been observed to be composed of an external membrane, a thick chitinous or keratin layer, and an inner membrane. A sac-like extension of the capsular wall into the capsule bears spines and stylets on its inner surface and evagination of this structure occurs on discharge. Profiles of tubular or membranous structures often are seen within the capsules of resting stenoteles. These structures are presumably related to the external filament. The spines often reveal a flattened aspect which suggests that at least some of them might more accurately be called "vanes." A cnidocil has been found to accompany each stenotele. This study revealed several aspects of the developmental stages of stenoteles: A vacuole is formed which is nearly surrounded by the nematocyte nucleus. The vacuole content changes in density and a capsular wall is formed at the periphery of the vacuole. Tubules differentiate from the capsular matrix, and spines and stylets develop somewhat later. An operculum is formed from the nematocyte cytoplasm.  相似文献   

12.
The genes associated with the biosynthesis of the polymeric bioemulsifier emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1 are clustered within a 27-kbp region termed the wee cluster. This report demonstrates the involvement of two genes of the wee cluster of RAG-1, wzb and wzc, in emulsan biosynthesis. The two gene products, Wzc and Wzb were overexpressed and purified. Wzc exhibited ATP-dependent autophosphorylating protein tyrosine kinase activity. Wzb was found to be a protein tyrosine phosphatase capable of dephosphorylating the phosphorylated Wzc. Using the synthetic substrate p-nitrophenyl phosphate (PNPP) Wzb exhibited a V(max) of 12 micromol of PNPP min(-1) mg(-1) and a K(m) of 8 mM PNPP at 30 degrees C. The emulsifying activity of mutants lacking either wzb or wzc was 16 and 15% of RAG-1 activity, respectively, suggesting a role for the two enzymes in emulsan production. Phosphorylation of Wzc was found to occur within a cluster of five tyrosine residues at the C terminus. Colonies from a mutant in which these five tyrosine residues were replaced by five phenylalanine residues along with those of a second mutant, which also lacked Wzb, exhibited a highly viscous colony consistency. Emulsan activity of these mutants was 25 and 24% of that of RAG-1, respectively. Neither of these mutants contained cell-associated emulsan. However, they did produce an extracellular high-molecular-mass galactosamine-containing polysaccharide. A model is proposed in which subunit polymerization, translocation and release of emulsan are all associated and coregulated by tyrosine phosphorylation.  相似文献   

13.
Protein tyrosine kinases in bacteria are structurally and functionally distinct from their eukaryotic counterparts. The largest family of bacterial tyrosine kinases, the BY-kinase family, is highly conserved in Gram-negative and Gram-positive species, and plays a central role in biofilm and capsule formation. In Escherichia coli the BY-kinase, Wzc, is a critical component of the machinery responsible for the synthesis and export of the exo-polysaccharide colanic acid, a key constituent of biofilms. Here we present the main-chain 1HN, 15N, 13C′ and 13Cα, side-chain 13Cβ resonance assignments for a construct that encodes the entire 274-residue cytosolic catalytic domain of Wzc.  相似文献   

14.
Bacterial tyrosine-kinases have been demonstrated to participate in the regulation of capsule polysaccharides (CPS) and exopolysaccharides (EPS) production and export. However, discrepant data have been reported on the molecular mechanism responsible for this regulation depending on the bacterial species analyzed. Special attention was previously paid to the tyrosine-kinase Wzcca of Escherichia coli K-12, which is involved in the production of the exopolysaccharide, colanic acid, and autophosphorylates by using a cooperative two-step process. In this work, we took advantage of these observations to investigate in further detail the effect of Wzcca phosphorylation on the colanic acid production. First, it is shown that expression of the phosphorylated form of Wzc prevents production of colanic acid whereas expression of the non-phosphorylated form allows biosynthesis of this exopolysaccharide. However, we provide evidence that, in the latter case, the size distribution of the colanic acid polymer is less scattered than in the case of the wild-type strain expressing both phosphorylated and non-phosphorylated forms of Wzc. It is then demonstrated that colanic acid production is not merely regulated by an on/off mechanism and that, instead, both phosphorylated and non-phosphorylated forms of Wzc are required to promote colanic acid synthesis. Moreover, a series of data suggests that besides the involvement of phosphorylated and non-phosphorylated forms of Wzc in the production of colanic acid, two particular regions of this kinase play as such an important role in the synthesis of this exopolysaccharide: a proline-rich domain located in the N-terminal part of Wzcca, and a tyrosine cluster present in the C-terminal portion of the enzyme. Furthermore, considering that polysaccharides are known to facilitate bacterial resistance to certain environmental stresses, it is shown that the resistance of E. coli to desiccation is directly connected with the phosphorylation state of Wzcca.  相似文献   

15.
The group 1 K30 antigen from Escherichia coli (O9a:K30) is present on the cell surface as both a capsular structure composed of high-molecular-weight K30 polysaccharide and as short K30 oligosaccharides linked to lipid A-core in a lipopolysaccharide molecule (K30LPS). To determine the molecular processes that are responsible for the two forms of K antigen, the 16 kb chromosomal cps region has been characterized. This region encodes 12 gene products required for the synthesis, polymerization and translocation of the K30 antigen. The gene products include four glycosyltransferases responsible for synthesis of the K30 repeat unit; a PST (1) exporter (Wzx), required to transfer lipid-linked K30 units across the plasma membrane to the periplasmic space; and a K30-antigen polymerase (Wzy). These gene products are typical of those seen in O-antigen biosynthesis gene clusters and they interact with the lipopolysaccharide translocation pathway to express K30LPS on the cell surface. The same gene products also provide the biosynthetic intermediates for the capsule assembly pathway, although they are not in themselves sufficient for synthesis of the K30 capsule. Three additional genes, wza, wzb and wzc, encode homologues to proteins that are encoded by gene clusters involved in expression of a variety of bacterial exopolysaccharides. Mutant analysis indicates that Wza and Wzc are required for wild-type surface expression of the capsular structure but are not essential for polymerization and play no role in the translocation of K30LPS. These surface expression components provide the key feature that distinguishes the assembly systems for O antigens and capsules.  相似文献   

16.
Low molecular weight protein-tyrosine phosphatases (LMW-PTPs) are small enzymes that ubiquitously exist in various organisms and play important roles in many biological processes. In Escherichia coli, the LMW-PTP Wzb dephosphorylates the autokinase Wzc, and the Wzc/Wzb pair regulates colanic acid production. However, the substrate recognition mechanism of Wzb is still poorly understood thus far. To elucidate the molecular basis of the catalytic mechanism, we have determined the solution structure of Wzb at high resolution by NMR spectroscopy. The Wzb structure highly resembles that of the typical LMW-PTP fold, suggesting that Wzb may adopt a similar catalytic mechanism with other LMW-PTPs. Nevertheless, in comparison with eukaryotic LMW-PTPs, the absence of an aromatic amino acid at the bottom of the active site significantly alters the molecular surface and implicates Wzb may adopt a novel substrate recognition mechanism. Furthermore, a structure-based multiple sequence alignment suggests that a class of the prokaryotic LMW-PTPs may share a similar substrate recognition mechanism with Wzb. The current studies provide the structural basis for rational drug design against the pathogenic bacteria.  相似文献   

17.
Surface expression of the group 1 K30 capsular polysaccharide of Escherichia coli strain E69 (O9a:K30) requires Wza(K30), a member of the outer membrane auxiliary (OMA) protein family. A mutation in wza(K30) severely restricts the formation of the K30 capsular structure on the cell surface, but does not interfere with the biosynthesis or polymerization of the K30 repeat unit. Here we show that Wza(K30) is a surface-exposed outer membrane lipoprotein. Wza(K30) multimers form ring-like structures in the outer membrane that are reminiscent of the secretins of type II and III protein translocation systems. We propose that Wza(K30) forms an outer membrane pore through which the K30-capsular antigen is translocated. This is the first evidence of a potential mechanism for translocation of high molecular weight polysaccharide across the outer membrane. The broad distribution of the OMA protein family suggests a similar process for polysaccharide export in diverse Gram-negative bacteria.  相似文献   

18.
Protein Wzc from Escherichia coli is a member of a newly defined family of protein-tyrosine autokinases that are essential for surface polysaccharide production in both Gram-negative and Gram-positive bacteria. Although the catalytic mechanism of the autophosphorylation of Wzc was recently described, the in vivo structural organization of this protein remained unclear. Here, we have determined the membrane topology of Wzc by performing translational fusions of lacZ and phoA reporter genes to the wzc gene. It has been shown that Wzc consists of two main structural domains: an N-terminal domain, bordered by two transmembrane helices, which is located in the periplasm of cells, and a C-terminal domain, harboring all phosphorylation sites of the protein, which is located in the cytoplasm. In addition, it has been demonstrated for the first time that Wzc can oligomerize in vivo to form essentially trimers and hexamers. Cross-linking experiments performed on strains expressing various domains of Wzc have shown that the cytoplasmic C-terminal domain is sufficient to generate oligomerization of Wzc. Mutant proteins, modified in either the ATP-binding site or the different phosphorylation sites, i.e. rendered unable to undergo autophosphorylation, have appeared to oligomerize into high molecular mass species identical to those formed by the wild-type protein. It was concluded that phosphorylation of Wzc is not essential to its oligomerization. These data, connected with the phosphorylation mechanism of Wzc, may be of biological significance in the regulatory role played by this kinase in polysaccharide synthesis.  相似文献   

19.
Entire hydras or tentacles were prepared for electron microscopy as described in the preceding paper. The stenotele capsule has been observed to be composed of an external membrane, a thick chitinous or keratin layer, and an inner membrane. A sac-like extension of the capsular wall into the capsule bears spines and stylets on its inner surface and evagination of this structure occurs on discharge. Profiles of tubular or membranous structures often are seen within the capsules of resting stenoteles. These structures are presumably related to the external filament. The spines often reveal a flattened aspect which suggests that at least some of them might more accurately be called "vanes." A cnidocil has been found to accompany each stenotele. This study revealed several aspects of the developmental stages of stenoteles: A vacuole is formed which is nearly surrounded by the nematocyte nucleus. The vacuole content changes in density and a capsular wall is formed at the periphery of the vacuole. Tubules differentiate from the capsular matrix, and spines and stylets develop somewhat later. An operculum is formed from the nematocyte cytoplasm.  相似文献   

20.
CpsA, CpsB, CpsC, and CpsD are part of a tyrosine phosphorylation regulatory system involved in modulation of capsule synthesis in Streptococcus pneumoniae and many other gram-positive and gram-negative bacteria. Using an immunoblotting technique, we observed distinct laddering patterns of S. pneumoniae capsular polysaccharides of various serotypes and found that transfer of the polymer from the membrane to the cell wall was independent of size. Deletion of cps2A, cps2B, cps2C, or cps2D in the serotype 2 strain D39 did not affect the ability to transfer capsule to the cell wall. Deletion of cps2C or cps2D, which encode two domains of an autophosphorylating tyrosine kinase, resulted in the production of only short-chain polymers. The function of Cps2A is unknown, and the polymer laddering pattern of the cps2A deletion mutants appeared similar to that of the parent, although the total amount of capsule was decreased. Loss of Cps2B, a tyrosine phosphatase and a kinase inhibitor, resulted in an increase in capsule amount and a normal ladder pattern. However, Cps2B mutants exhibited reduced virulence following intravenous inoculation of mice and were unable to colonize the nasopharynx, suggesting a diminished capacity to sense or respond to these environments. In D39 and its isogenic mutants, the amounts of capsule and tyrosine-phosphorylated Cps2D (Cps2D approximately P) correlated directly. In contrast, restoration of type 2 capsule production followed by deletion of cps2B in Rx1, a laboratory passaged D39 derivative containing multiple uncharacterized mutations, resulted in decreased capsule amounts but no alteration in Cps2D approximately P levels. Thus, a factor outside the capsule locus, which is either missing or defective in the Rx1 background, is important in the control of capsule synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号