首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Subcellular compartmentalization enables eukaryotic cells to carry out different reactions at the same time, resulting in different metabolite pools in the subcellular compartments. Thus, mutations affecting the mitochondrial energy metabolism could cause different metabolic alterations in mitochondria compared to the cytoplasm. Given that the metabolite pool in the cytosol is larger than that of other subcellular compartments, metabolic profiling of total cells could miss these compartment-specific metabolic alterations.

Objectives

To reveal compartment-specific metabolic differences, mitochondria and the cytoplasmic fraction of baker’s yeast Saccharomyces cerevisiae were isolated and subjected to metabolic profiling.

Methods

Mitochondria were isolated through differential centrifugation and were analyzed together with the remaining cytoplasm by gas chromatography–mass spectrometry (GC–MS) based metabolic profiling.

Results

Seventy-two metabolites were identified, of which eight were found exclusively in mitochondria and sixteen exclusively in the cytoplasm. Based on the metabolic signature of mitochondria and of the cytoplasm, mutants of the succinate dehydrogenase (respiratory chain complex II) and of the FOF1-ATP-synthase (complex V) can be discriminated in both compartments by principal component analysis from wild-type and each other. These mitochondrial oxidative phosphorylation machinery mutants altered not only citric acid cycle related metabolites but also amino acids, fatty acids, purine and pyrimidine intermediates and others.

Conclusion

By applying metabolomics to isolated mitochondria and the corresponding cytoplasm, compartment-specific metabolic signatures can be identified. This subcellular metabolomics analysis is a powerful tool to study the molecular mechanism of compartment-specific metabolic homeostasis in response to mutations affecting the mitochondrial metabolism.
  相似文献   

2.

Background

In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure.

Results

The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits.

Conclusions

We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
  相似文献   

3.

Background

The role of the cytoskeleton in regulating mitochondrial distribution in dividing mammalian cells is poorly understood. We previously demonstrated that mitochondria are transported to the cleavage furrow during cytokinesis in a microtubule-dependent manner. However, the exact subset of spindle microtubules and molecular machinery involved remains unknown.

Methods

We employed quantitative imaging techniques and structured illumination microscopy to analyse the spatial and temporal relationship of mitochondria with microtubules and actin of the contractile ring during cytokinesis in HeLa cells.

Results

Superresolution microscopy revealed that mitochondria were associated with astral microtubules of the mitotic spindle in cytokinetic cells. Dominant-negative mutants of KIF5B, the heavy chain of kinesin-1 motor, and of Miro-1 disrupted mitochondrial transport to the furrow. Live imaging revealed that mitochondrial enrichment at the cell equator occurred simultaneously with the appearance of the contractile ring in cytokinesis. Inhibiting RhoA activity and contractile ring assembly with C3 transferase, caused mitochondrial mislocalisation during division.

Conclusions

Taken together, the data suggest a model in which mitochondria are transported by a microtubule-mediated mechanism involving equatorial astral microtubules, Miro-1, and KIF5B to the nascent actomyosin contractile ring in cytokinesis.
  相似文献   

4.

Background

Mitochondria exhibit a dynamic morphology in cells and their biogenesis and function are integrated with the nuclear cell cycle. In mitotic cells, the filamentous network structure of mitochondria takes on a fragmented form. To date, however, whether mitochondrial fusion activity is regulated in mitosis has yet to be elucidated.

Findings

Here, we report that mitochondria were found to be fragmented in G2 phase prior to mitotic entry. Mitofusin 1 (Mfn1), a mitochondrial fusion protein, interacted with cyclin B1, and their interactions became stronger in G2/M phase. In addition, MARCH5, a mitochondrial E3 ubiquitin ligase, reduced Mfn1 levels and the MARCH5-mediated Mfn1 ubiquitylation were enhanced in G2/M phase.

Conclusions

Mfn1 is degraded through the MARCH5-mediated ubiquitylation in G2/M phase and the cell cycle-dependent degradation of Mfn1 could be facilitated by interaction with cyclin B1/Cdk1 complexes.
  相似文献   

5.

Background

Friedreich ataxia is a neurological disease originating from an iron-sulfur cluster enzyme deficiency due to impaired iron handling in the mitochondrion, aconitase being particularly affected. As a mean to counteract disease progression, it has been suggested to chelate free mitochondrial iron. Recent years have witnessed a renewed interest in this strategy because of availability of deferiprone, a chelator preferentially targeting mitochondrial iron.

Method

Control and Friedreich's ataxia patient cultured skin fibroblasts, frataxin-depleted neuroblastoma-derived cells (SK-N-AS) were studied for their response to iron chelation, with a particular attention paid to iron-sensitive aconitase activity.

Results

We found that a direct consequence of chelating mitochondrial free iron in various cell systems is a concentration and time dependent loss of aconitase activity. Impairing aconitase activity was shown to precede decreased cell proliferation.

Conclusion

We conclude that, if chelating excessive mitochondrial iron may be beneficial at some stage of the disease, great attention should be paid to not fully deplete mitochondrial iron store in order to avoid undesirable consequences.
  相似文献   

6.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

7.

Background

DNA replication requires contributions from various proteins, such as DNA helicases; in mitochondria Twinkle is important for maintaining and replicating mitochondrial DNA. Twinkle helicases are predicted to also possess primase activity, as has been shown in plants; however this activity appears to have been lost in metazoans. Given this, the study of Twinkle in other organisms is required to better understand the evolution of this family and the roles it performs within mitochondria.

Results

Here we describe the characterization of a Twinkle homologue, Twm1, in the amoeba Dictyostelium discoideum, a model organism for mitochondrial genetics and disease. We show that Twm1 is important for mitochondrial function as it maintains mitochondrial DNA copy number in vivo. Twm1 is a helicase which unwinds DNA resembling open forks, although it can act upon substrates with a single 3′ overhang, albeit less efficiently. Furthermore, unlike human Twinkle, Twm1 has primase activity in vitro. Finally, using a novel in bacterio approach, we demonstrated that Twm1 promotes DNA replication.

Conclusions

We conclude that Twm1 is a replicative mitochondrial DNA helicase which is capable of priming DNA for replication. Our results also suggest that non-metazoan Twinkle could function in the initiation of mitochondrial DNA replication. While further work is required, this study has illuminated several alternative processes of mitochondrial DNA maintenance which might also be performed by the Twinkle family of helicases.
  相似文献   

8.

Background

One of the most common side effects of the immunosuppressive drug tacrolimus (FK506) is the increased risk of new-onset diabetes mellitus. However, the molecular mechanisms underlying this association have not been fully clarified.

Methods

We studied the effects of the therapeutic dose of tacrolimus on mitochondrial fitness in beta-cells.

Results

We demonstrate that tacrolimus impairs glucose-stimulated insulin secretion (GSIS) in beta-cells through a previously unidentified mechanism. Indeed, tacrolimus causes a decrease in mitochondrial Ca2+ uptake, accompanied by altered mitochondrial respiration and reduced ATP production, eventually leading to impaired GSIS.

Conclusion

Our observations individuate a new fundamental mechanism responsible for the augmented incidence of diabetes following tacrolimus treatment. Indeed, this drug alters Ca2+ fluxes in mitochondria, thereby compromising metabolism-secretion coupling in beta-cells.
  相似文献   

9.

Introduction

Antiretroviral therapy (ART) for HIV-infected pregnant women is highly effective in preventing mother-to-child transmission (PMTCT) of the virus, but deleterious metabolic and mitochondrial observations in infants born to HIV-infected women treated with ART during pregnancy are periodically reported.

Objectives

This study addresses the concern of HIV-ART-induced metabolic perturbations through a metabolomics study of cord blood collected during transitional neonatal hypoglycaemia following birth from newborns either exposed or unexposed to fetal HIV-ART.

Methods

Proton magnetic resonance spectra from cord blood of 11 in utero HIV-ART-exposed and 14 unexposed newborns, as well as serum from 8 control infants, generated 114 spectral bins which were used to identify significant metabolites by means of univariate and multivariate statistical analyses.

Results

The metabolite profiles differed significantly between that from the unexposed newborns and that from infants—interpreted to characterize the state of transitional neonatal hypoglycaemia (low glucose and high lactic acid and ketone bodies). Quantitative analysis of potential ATP generation showed no meaningful difference in the global metabolite profiles of HIV-ART-exposed and unexposed neonates, but Volcano plot analysis, affirmed by odds ratios, indicated that exposure to HIV-ART affected the plasma 3-hydroxybutyric acid and hypoxanthine concentrations.

Conclusions

The metabolite profile for transitional neonatal hypoglycaemia indicated that HIV-ART did not compromise the exposed neonates to the energy stress of allostasis experienced at birth. Increased hypoxanthine and 3-hydroxybutyric acid indicates metabolic stress at birth in some of the newborns exposed to HIV-ART and raises a concern about unrecognized prolonged allostasis with potential neurological consequences for these infants.
  相似文献   

10.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

11.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

12.

Background

Endophytes have proven to be an invaluable resource of chemically diverse secondary metabolites that act as excellent lead compounds for anticancer drug discovery. Here we report the promising cytotoxic effects of Cladosporol A (HPLC purified >98%) isolated from endophytic fungus Cladosporium cladosporioides collected from Datura innoxia. Cladosporol A was subjected to in vitro cytotoxicity assay against NCI60 panel of human cancer cells using MTT assay. We further investigated the molecular mechanism(s) of Cladosporol A induced cell death in human breast (MCF-7) cancer cells. Mechanistically early events of cell death were studied using DAPI, Annexin V-FITC staining assay. Furthermore, immunofluorescence studies were carried to see the involvement of intrinsic pathway leading to mitochondrial dysfunction, cytochrome c release, Bax/Bcl-2 regulation and flowcytometrically measured membrane potential loss of mitochondria in human breast (MCF-7) cancer cells after Cladosporol A treatment. The interplay between apoptosis and autophagy was studied by microtubule dynamics, expression of pro-apoptotic protein p21 and autophagic markers monodansylcadaverine staining and LC3b expression.

Results

Among NCI60 human cancer cell line panel Cladosporol A showed least IC50 value against human breast (MCF-7) cancer cells. The early events of apoptosis were characterized by phosphatidylserine exposure. It disrupts microtubule dynamics and also induces expression of pro-apoptotic protein p21. Moreover treatment of Cladosporol A significantly induced MMP loss, release of cytochrome c, Bcl-2 down regulation, Bax upregulation as well as increased monodansylcadaverine (MDC) staining and leads to LC3-I to LC3-II conversion.

Conclusion

Our experimental data suggests that Cladosporol A depolymerize microtubules, sensitize programmed cell death via ROS mediated autophagic flux leading to mitophagic cell death.

Graphical abstract

The proposed mechanism of Cladosporol A -triggered apoptotic as well as autophagic death of human breast cancer (MCF-7) cells. The figure shows that Cladosporol A induced apoptosis through ROS mediated mitochondrial pathway and increased p21 protein expression in MCF-7 cells in vitro.
  相似文献   

13.

Objectives

To explore the functional effects of miR-1284 on gastric cancer cells.

Results

Overexpression of miR-1284 significantly reduced SGC-7901 cell proliferation, but improved apoptosis. However, miR-1284 suppression displayed the inversed impacts. Furthermore, the protein levels of p27, Bax, procaspase-3 and active caspase-3 were up-regulated by miR-1284 overexpression, but were down-regulated by miR-1284 suppression. The level of Bcl-2 was down-regulated by miR-1284 overexpression, while it was up-regulated by miR-1284 suppression. The level of p21 was unaffected.

Conclusion

These results suggest that miR-1284 overexpression might be a suppressor for gastric cancer via controlling of cell proliferation and apoptosis.
  相似文献   

14.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

15.

Background

Insects are renowned for their ability to survive anoxia. Anoxia tolerance may be enhanced during chilling through metabolic suppression.

Aims

Here, the metabolomic response of insects to anoxia, both with and without chilling, for different durations (12–36 h) was examined to assess the potential cross-tolerance mechanisms.

Results

Chilling during anoxia (cold anoxia) significantly improved survival relative to anoxia at warmer temperatures. Reduced intermediate metabolites and increased lactic acid, indicating a switch to anaerobic metabolism, were characteristic of larvae in anoxia.

Conclusions

Anoxia tolerance was correlated survival improvements after cold anoxia were correlated with a reduction in anaerobic metabolism.
  相似文献   

16.

Introduction

Methylmercury (MeHg) exposure has been a public health problem for many decades. There is a growing interest in searching for possible dietary nutrients that may affect MeHg toxicity.

Objectives

The study aims to evaluate the impact of eicosapentaenoic acid (EPA) on modulating MeHg toxicity in mice.

Methods

The study was based on a two-level factorial design, where the factors were presence or absence of EPA and MeHg in the feed. A liquid chromatography-mass spectrometry-based lipidomics approach was used to identify and quantify the main phospholipid species in mouse liver and plasma. The effects of EPA and MeHg on phospholipid species were evaluated by principal component analysis and statistics. Some biochemical and toxicological markers were measured and hepatic histological assay was carried out.

Results

EPA treatment significantly elevated the phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) species that contain n-3 PUFA, and reduced the levels of PtdCho and PtdEtn species that contain arachidonic acid (ARA), while MeHg exhibited opposite effects on these specific PtdCho species in liver. MeHg induced higher prostaglandin E2 and lower prostaglandin E3, thus increasing pro-inflammatory factors, while EPA decreased these ARA-derived inflammatory factors. Moreover, MeHg induced chronic inflammatory symptoms in mice, including severe hepatic necrosis, higher aspartate aminotransferase and alanine aminotransferase activities in plasma, higher thiobarbituric acid reactive substances and lower glutathione in liver. These symptoms were all alleviated by EPA treatment.

Conclusion

EPA may have protective effect against MeHg-induced toxicity due to the favorable modification of membrane phospholipid composition and inhibition of inflammatory factors.
  相似文献   

17.

Introduction

Since blood is in contact with all tissues in the body and is considered to dynamically reflect the body’s pathophysiological status, serum metabolomics changes are important and have diagnostic value in early cancer detection.

Objectives

In this prospective study, we investigated the application of metabolomics to differentiate subjects with incident breast cancer (BC) from subjects who remained free of cancer during a mean follow-up period of 7 years with the aim of identifying valuable biomarkers for BC.

Methods

Baseline serum samples from 84 female subjects with incident BC (BC group) and 88 cancer-free female subjects (control group) were used. Metabolic alterations associated with BC were investigated via metabolomics analysis of the baseline serum samples using ultra-performance liquid chromatography-linear-trap quadrupole-Orbitrap mass spectrometry.

Results

A total of 57 metabolites were identified through the metabolic analysis. Among them, 20 metabolite levels were significantly higher and 22 metabolite levels were significantly lower in the BC group than in the control group at baseline. Ten metabolic pathways, including amino acid metabolism, arachidonic acid (AA) metabolism, fatty acid metabolism, linoleic acid metabolism, and retinol metabolism, showed significant differences between the BC group and the control group. Logistic regression revealed that the incidence of BC was affected by leucine, AA, prostaglandin (PG)J2, PGE2, and γ-linolenic acid (GLA).

Conclusions

This prospective study showed the clinical relevance of dysregulation of various metabolisms on the incidence of BC. Additionally, leucine, AA, PGJ2, PGE2, and GLA were identified as independent variables affecting the incidence of BC.
  相似文献   

18.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

19.

Background

In this study, we optimized the process for enhancing amylase production from Pseudomonas balearica VITPS19 isolated from agricultural lands in Kolathur, India.

Methods

Process optimization for enhancing amylase production from the isolate was carried out by Response Surface Methodology (RSM) with optimized chemical and physical sources using Design expert v.7.0. A central composite design was used to evaluate the interaction between parameters. Interaction between four factors–maltose (C-source), malt extract (Nsource), pH, and CaCl2 was studied.

Results

The factors pH and CaCl2 concentration were found to affect amylase production. Validation of the experiment showed a nearly twofold increase in alpha amylase production.

Conclusion

Amylase production was thus optimized and increased yield was achieved.
  相似文献   

20.

Background

Inflammatory bowel disease is a group of pathologies characterised by chronic inflammation of the intestine and an unclear aetiology. Its main manifestations are Crohn’s disease and ulcerative colitis. Currently, biopsies are the most used diagnostic tests for these diseases and metabolomics could represent a less invasive approach to identify biomarkers of disease presence and progression.

Objectives

The lipid and the polar metabolite profile of plasma samples of patients affected by inflammatory bowel disease have been compared with healthy individuals with the aim to find their metabolomic differences. Also, a selected sub-set of samples was analysed following solid phase extraction to further characterise differences between pathological samples.

Methods

A total of 200 plasma samples were analysed using drift tube ion mobility coupled with time of flight mass spectrometry and liquid chromatography for the lipid metabolite profile analysis, while liquid chromatography coupled with triple quadrupole mass spectrometry was used for the polar metabolite profile analysis.

Results

Variations in the lipid profile between inflammatory bowel disease and healthy individuals were highlighted. Phosphatidylcholines, lyso-phosphatidylcholines and fatty acids were significantly changed among pathological samples suggesting changes in phospholipase A2 and arachidonic acid metabolic pathways. Variations in the levels of cholesteryl esters and glycerophospholipids were also found. Furthermore, a decrease in amino acids levels suggests mucosal damage in inflammatory bowel disease.

Conclusions

Given good statistical results and predictive power of the model produced in our study, metabolomics can be considered as a valid tool to investigate inflammatory bowel disease.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号