首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle fiber conduction velocity (MFCV) provides indications on motor unit recruitment strategies due to the relation between conduction velocity and fiber diameter. The aim of this study was to investigate MFCV of thigh muscles during cycling at varying power outputs, pedal rates, and external forces. Twelve healthy male participants aged between 19 and 30 yr cycled on an electronically braked ergometer at 45, 60, 90, and 120 rpm. For each pedal rate, subjects performed two exercise intensities, one at an external power output corresponding to the previously determined lactate threshold (100% LT) and the other at half of this power output (50% LT). Surface electromyogram signals were detected during cycling from vastus lateralis and medialis muscles with linear adhesive arrays of eight electrodes. In both muscles, MFCV was higher at 100% LT compared with 50% LT for all average pedal rates except 120 rpm (mean +/- SE, 4.98 +/- 0.19 vs. 4.49 +/- 0.18 m/s; P < 0.001). In all conditions, MFVC increased with increasing instantaneous knee angular speed (from 4.14 +/- 0.16 to 5.08 +/- 0.13 m/s in the range of instantaneous angular speeds investigated; P < 0.001). When MFCV was compared at the same external force production (i.e., 90 rpm/100% LT vs. 45 rpm/50% LT, and 120 rpm/100% LT vs. 60 rpm/50% LT), MFCV was higher at the faster pedal rate (5.02 +/- 0.17 vs. 4.64 +/- 0.12 m/s, and 4.92 +/- 0.19 vs. 4.49 +/- 0.11 m/s, respectively; P < 0.05) due to the increase in inertial power required to accelerate the limbs. It was concluded that, during repetitive dynamic movements, MFCV increases with the external force developed, instantaneous knee angular speed, and average pedal rate, indicating progressive recruitment of large, high conduction velocity motor units with increasing muscle force.  相似文献   

2.
The mechanisms underlying the oxygen uptake (Vo(2)) slow component during supra-lactate threshold (supra-LT) exercise are poorly understood. Evidence suggests that the Vo(2) slow component may be caused by progressive muscle recruitment during exercise. We therefore examined whether leg muscle activation patterns [from the transverse relaxation time (T2) of magnetic resonance images] were associated with supra-LT Vo(2) kinetic parameters. Eleven subjects performed 6-min cycle ergometry at moderate (80% LT), heavy (70% between LT and critical power; CP), and very heavy (7% above CP) intensities with breath-by-breath pulmonary Vo(2) measurement. T2 in 10 leg muscles was evaluated at rest and after 3 and 6 min of exercise. During moderate exercise, nine muscles achieved a steady-state T2 by 3 min; only in the vastus medialis did T2 increase further after 6 min. During heavy exercise, T2 in the entire vastus group increased between minutes 3 and 6, and additional increases in T2 were seen in adductor magnus and gracilis during this period of very heavy exercise. The Vo(2) slow component increased with increasing exercise intensity (being functionally zero during moderate exercise). The distribution of T2 was more diverse as supra-LT exercise progressed: T2 variance (ms) increased from 3.6 +/- 0.2 to 6.5 +/- 1.7 between 3 and 6 min of heavy exercise and from 5.5 +/- 0.8 to 12.3 +/- 5.4 in very heavy exercise (rest = 3.1 +/- 0.6). The T2 distribution was significantly correlated with the magnitude of the Vo(2) slow component (P < 0.05). These data are consistent with the notion that the Vo(2) slow component is an expression of progressive muscle recruitment during supra-LT exercise.  相似文献   

3.
Muscle fiber conduction velocity (MFCV) gives critical information on neuromuscular control and can be considered a size principle parameter, being suggestive of motor unit recruitment strategies. MFCV has been recently measured during constant-load sub-maximal cycling exercise and was found to correlate positively with percentage of type I myosin heavy chain.The aim of this study was to test the hypothesis that MFCV measured during an incremental cycling test using surface electromyography (sEMG), can be sensitive to the different metabolic requests elicited by the exercise. In particular, the relationship between ventilatory threshold (T-vent), VO2max and MFCV was explored.Eleven male physically active subjects (age 30 ± 9 years) undertook a 1-min incremental cycling test to exhaustion. T-vent and VO2max were measured using an open circuit breath by breath gas analyzer. The sEMG was recorded from the vastus lateralis muscle with an adhesive 4-electrodes array, and the MFCV was computed on each sEMG burst over the last 30-s of each step.The mean VO2max obtained during the maximal test was 53.32 ± 2.33 ml kg?1 min?1, and the T-vent was reached at 80.77 ± 3.49% of VO2max. In all subjects reliable measures of MFCV were obtained at every exercise intensity (cross correlation values >0.8). MFCV increased linearly with the mechanical load, reaching a maximum value of 4.28 ± 0.67 m s?1 at an intensity corresponding to the T-vent. Thereafter, MFCV declined until maximal work intensities. This study demonstrates that MFCV can be used as non-invasive tool to infer MUs recruitment/derecruitment strategies even during dynamic exercise from low to maximal intensities.  相似文献   

4.
Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

5.
Combined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type IC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.  相似文献   

6.
Summary Combined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type HC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.  相似文献   

7.
Before using electromyographic (EMG) variables such as muscle fiber conduction velocity (MFCV) and the mean or median frequency (MDF) of an EMG power spectrum as indicators of muscular fatigue during dynamic exercises, it is necessary to determine the influence of a joint angle, contraction force and contraction speed on the EMG variables. If these factors affect the EMG variables, their influence must be removed or compensated for before discussing fatigue. The vastus lateralis of eight normal healthy male adults was studied. EMG signals during non-fatiguing dynamic knee extension exercises were detected with a three-bar active surface electrode array. EMG variables were calculated from the detected signals and compared with the angle of the knee joint, the extension torque and the extension speed. The extension torque was set at four levels with 10% intervals between 40 and 70% of the maximum voluntary contraction. The extension speed was set at five levels with 60 degrees /s intervals between 0 and 240 degrees /s. Because the joint angle unsystematically affected the MFCV, EMG variables at a given joint angle were extracted for comparison. The influence of the extension torque and speed on the extracted EMG variables was clarified with an ANOVA and a regression analysis. The statistical analyses showed that MFCV increased with the extension torque but did not depend on the extension speed. In contrast, MDF was independent of the extension torque but was dependent on the extension speed. MDF thus showed a behavior different from that of MFCV. It became clear that if MFCV is used as an indicator of muscular fatigue during dynamic exercises, it is at least necessary to extract MFCV at a predetermined joint angle and then remove the influence of extension torque on MFCV.  相似文献   

8.
Summary Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

9.
This study determined whether the beneficial effects of exercise training on the diabetic heart previously observed are associated with alterations in ventricular myosin heavy chain (MHC) isoform composition. Diabetes was induced in rats by i.v. streptozotocin. Trained rats were run on a treadmill for 60 min/day, 27 m/min, 10% grade. After 10 wks, ventricular MHC isoenzyme protein composition was analyzed for MHC composition using gel electrophoresis. -MHC and -MHC mRNA were determined by Northern and slot blot hybridization techniques. Both protein and mRNA analyses indicated that sedentary control rats exhibited a predominance of -MHC. Sedentary diabetics exhibited a shift to -MHC. Exercise trained diabetic rats showed a predominance of -MHC. The results indicate that treadmill exercise training of diabetic rat does not prevent the diabetes-induced shift in MHC composition towards the -MHC isoform, thus it is unlikely that the beneficial effects of exercise training on the diabetic heart, previously shown, are due to a normalization of the myosin isoform composition.  相似文献   

10.
Integrated electromyography (iEMG) of the m. vastus lateralis was analysed during cycle ergometry in male subjects (n = 8). Two work trials were conducted, one under normoxia (N), the other under environmental normobaric hypoxia (EH in which the oxygen fraction in inspired gas = 0.116), each trial lasting 10 min. The absolute power output (180 W) was the same for both trials and was equivalent to 77 (4)% of maximum heart rate in trial N. Maximal voluntary isometric contractions were performed after each trial to assess changes in force, muscle fibre conduction velocity (MFCV), electromechanical delay (EMD), median frequency of EMG (MF) and maximal iEMG (iEMGmax). Biopy samples of muscle were obtained from the m. vastus medialis before testing. Myosin heavy chain (MHC) differences were determined through sodium dodecyl-polyacrylamide gel electrophoresis followed by densitometric analysis. No differences in submaximal iEMG were observed between EH and N trials during the first minute of work. At the end of both work trials iEMG was significantly elevated compared with starting values, however the iEMG recorded in EH exceeded N values by 15%. At the end of the EH trials the following were observed: a decrease in isometric force, MFCV and MF with an increase in EMD and the iEMGmax/force ratio. The iEMGmax was unchanged. No differences in any of these variables were observed after the N trial. Mean (SD) lactate concentrations following EH and N trials were 9.2 (4.4) mmol · 1−1 and 3.5 (1.1) mmol · 1−1, respectively. Results indicate that an increased motor unit recruitment and rate coding was needed in EH to maintain the required power output. The increased motor unit recruitment and rate coding were associated with myoelectric evidence of “peripheral” muscle fatigue. Subjects with higher compositions of type II MHC accumulated more lactate and displayed greater reductions in MF and MFCV during fatigue. Accepted: 16 June 1996  相似文献   

11.
The effects of a single series of high-force eccentric contractions involving the quadriceps muscle group (single leg) on plasma concentrations of muscle proteins were examined as a function of time, in the context of measurements of torque production and magnetic resonance imaging (MRI) of the involved muscle groups. Plasma concentrations of slow-twitch skeletal (cardiac beta-type) myosin heavy chain (MHC) fragments, myoglobin, creatine kinase (CK), and cardiac troponin T were measured in blood samples of six healthy male volunteers before and 2 h after 70 eccentric contractions of the quadriceps femoris muscle. Screenings were conducted 1, 2, 3, 6, 9, and 13 days later. To visualize muscle injury, MRI of the loaded and unloaded thighs was performed 3, 6, and 9 days after the eccentric exercise bout. Force generation of the knee extensors was monitored on a dynamometer (Cybex II+) parallel to blood sampling. Exercise resulted in a biphasic myoglobin release profile, delayed CK and MHC peaks. Increased MHC fragment concentrations of slow skeletal muscle myosin occurred in late samples of all participants, which indicated a degradation of slow skeletal muscle myosin. Because cardiac troponin T was within the normal range in all samples, which excluded a protein release from the heart (cardiac beta-type MHC), this finding provides evidence for an injury of slow-twitch skeletal muscle fibers in response to eccentric contractions. Muscle action revealed delayed reversible increases in MRI signal intensities on T2-weighted images of the loaded vastus intermedius and deep parts of the vastus lateralis. We attributed MRI signal changes due to edema in part to slow skeletal muscle fiber injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We hypothesized that the elevated primary O(2) uptake (VO(2)) amplitude during the second of two bouts of heavy cycle exercise would be accompanied by an increase in the integrated electromyogram (iEMG) measured from three leg muscles (gluteus maximus, vastus lateralis, and vastus medialis). Eight healthy men performed two 6-min bouts of heavy leg cycling (at 70% of the difference between the lactate threshold and peak VO(2)) separated by 12 min of recovery. The iEMG was measured throughout each exercise bout. The amplitude of the primary VO(2) response was increased after prior heavy leg exercise (from mean +/- SE 2.11 +/- 0.12 to 2.44 +/- 0.10 l/min, P < 0.05) with no change in the time constant of the primary response (from 21.7 +/- 2.3 to 25.2 +/- 3.3 s), and the amplitude of the VO(2) slow component was reduced (from 0.79 +/- 0.08 to 0.40 +/- 0.08 l/min, P < 0.05). The elevated primary VO(2) amplitude after leg cycling was accompanied by a 19% increase in the averaged iEMG of the three muscles in the first 2 min of exercise (491 +/- 108 vs. 604 +/- 151% increase above baseline values, P < 0.05), whereas mean power frequency was unchanged (80.1 +/- 0.9 vs. 80.6 +/- 1.0 Hz). The results of the present study indicate that the increased primary VO(2) amplitude observed during the second of two bouts of heavy exercise is related to a greater recruitment of motor units at the onset of exercise.  相似文献   

13.
The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance. The volunteers activated a target motor unit at the minimum discharge rate in eight 3-min-long contractions, three before and five after an isometric contraction at 40% of the maximal torque, sustained until endurance. Multichannel surface electromyogram signals and joint torque were averaged with the target motor unit potential as trigger. Discharge rate (mean +/- SE, 6.6 +/- 0.2 pulses/s) and interpulse interval variability (33.3 +/- 7.0%) were not different in the eight contractions. Peak twitch torque and recruitment threshold increased significantly (93 +/- 29 and 12 +/- 5%, P <0.05) in the contraction immediately after the endurance task with respect to the preendurance values (0.94 +/- 0.26 mN.m and 3.7 +/- 0.5% of the maximal torque), whereas time to peak of the twitch torque did not change (74.4 +/- 10.1 ms). Muscle fiber conduction velocity decreased and action potential duration increased in the contraction after the endurance (6.3 +/- 1.8 and 9.8 +/- 1.8%, respectively, P <0.05; preendurance values, 3.9 +/- 0.2 m/s and 11.1 +/- 0.8 ms), whereas the surface potential peak-to-peak amplitude did not change (27.1 +/- 3.1 microV). There was no significant correlation between the relative changes in muscle fiber conduction velocity or surface potential duration and in peak twitch torque (R2= 0.04 and 0.10, respectively). In conclusion, modifications in peak twitch torque of low-threshold motor units with sustained contraction are mainly determined by mechanisms not related to changes in action potential shape and in its propagation velocity.  相似文献   

14.
In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (P(I, max)) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev min(-1) and at 120 rev min(-1). In the studied group of subjects P(I, max) reached during cycling at 60 rev min(-1) was significantly higher (p=0.0001) than that at 120 rev min(-1) (287+/-29 vs. 215+/-42 W, respectively for 60 and 120 rev min(-1)). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8+/-2.79 %) and group L with lower MyHC II content in this muscle (28.6+/-5.8 %). P(I, max) reached during cycling performed at 60 rev min(-1) in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev min(-1), there was no significant difference in P(I, max) reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO(2)), blood hydrogen ion [H(+)], plasma lactate [La(-)] and ammonia [NH(3)] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev min(-1), in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H(+)], [La(-)] and [NH(3)] concentrations. This indicates that at high pedaling rates the subjects with higher percentage of MyHC II in the vastus lateralis muscle perform relatively better than the subjects with lower percentage of MyHC II in this muscle.  相似文献   

15.
16.
17.
The aim of this study was to examine the influence of water immersion to the chest on cardio-vascular adaptation to exercise. Upright or sitting immersion causes an increase in central blood volume, but it remains controversial whether central blood volume remains elevated during dynamic exercise in water and facilitates cardiac adaptation, depending particularly on the intensity of exercise which can be matched for O2 consumption (metabolic range) or for mechanical intensity (work load). We have compared hemodynamic variables measured during two cycling exercises at the same mechanical intensity, performed both in ambiant air and during immersion up to the chest.  相似文献   

18.
The present study investigated potential age-related changes in human muscle spindles with respect to the intrafusal fiber-type content and myosin heavy chain (MyHC) composition in biceps brachii muscle. The total number of intrafusal fibers per spindle decreased significantly with aging, due to a significant reduction in the number of nuclear chain fibers. Nuclear chain fibers in old spindles were short and some showed novel expression of MyHC alpha-cardiac. The expression of MyHC alpha-cardiac in bag1 and bag2 fibers was greatly decreased in the A region. The expression of slow MyHC was increased in nuclear bag1 fibers and that of fetal MyHC decreased in bag2 fibers whereas the patterns of distribution of the remaining MyHC isoforms were generally not affected by aging. We conclude that aging appears to have an important impact on muscle spindle composition. These changes in muscle spindle phenotype may reflect an age-related deterioration in sensory and motor innervation and are likely to have an impact in motor control in the elderly.  相似文献   

19.
Two series of experiments were performed to examine the relationship between force and change in average muscle fibre conduction velocity (MFCV) during local muscle fatigue. The average MFCV was estimated using the cross-correlation method. In the first experiment this relationship was studied with surface EMG of vastus lateralis at force levels from 10 to 100% of maximal voluntary contraction (MVC) with and without occluded circulation. The product of relative force and time was held constant. At 10-20% MVC, MFCV increased slightly under the 2 conditions. Between 30-40% MVC, MFCV decreased, this decline in conduction velocity being significantly greater with occluded circulation. Above 40% MVC the decline in MFCV was larger at higher forces, but without any differences between the ischaemic and non-ischaemic conditions. In the second experiment the relationship between change in force and MFCV was studied during sustained maximal voluntary contractions of biceps brachii. MFCV declined during the first 26-39 s of the contraction, followed by an increase. Since this increase occurred when the force had dropped to 30-50% of the initial maximal force, a partial restoration of blood flow is thought to be responsible for this phenomenon. Because an increase in MFCV was noted, despite a further decline in force, this implies that at high force levels the change in MFCV during fatigue could partly be caused by mechanisms different from those accounting for the force loss. It is concluded that above 40% MVC intramuscular pressure is sufficiently high to cause ischaemia, and MFCV is found to be very sensitive to changes in intramuscular blood flow.  相似文献   

20.
Vertebrate muscles are composed of an array of diverse fast and slow fiber types with different contractile properties. Differences among fibers in fast and slow MyHC expression could be due to extrinsic factors that act on the differentiated myofibers. Alternatively, the mononucleate myoblasts that fuse to form multinucleated muscle fibers could differ intrinsically due to lineage. To distinguish between these possibilities, we determined whether the changes in proportion of slow fibers were attributable to inherent differences in myoblasts. The proportion of fibers expressing slow myosin heavy chain (MyHC) was found to change markedly with time during embryonic and fetal human limb development. During the first trimester, a maximum of 75% of fibers expressed slow MyHC. Thereafter, new fibers formed which did not express this MyHC, so that the proportion of fibers expressing slow MyHC dropped to approximately 3% of the total by midgestation. Several weeks later, a subset of the new fibers began to express slow MyHC and from week 30 of gestation through adulthood, approximately 50% of fibers were slow. However, each myoblast clone (n = 2,119) derived from muscle tissues at six stages of human development (weeks 7, 9, 16, and 22 of gestation, 2 mo after birth and adult) expressed slow MyHC upon differentiation. We conclude from these results that the control of slow MyHC expression in vivo during muscle fiber formation in embryonic development is largely extrinsic to the myoblast. By contrast, human myoblast clones from the same samples differed in their expression of embryonic and neonatal MyHCs, in agreement with studies in other species, and this difference was shown to be stably heritable. Even after 25 population doublings in tissue culture, embryonic stage myoblasts did not give rise to myoblasts capable of expressing MyHCs typical of neonatal stages, indicating that stage-specific differences are not under the control of a division dependent mechanism, or intrinsic "clock." Taken together, these results suggest that, unlike embryonic and neonatal MyHCs, the expression of slow MyHC in vivo at different developmental stages during gestation is not the result of commitment to a distinct myoblast lineage, but is largely determined by the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号