首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of rats with ethanol or rabbits with either imidazole or pyrazole, agents known to induce the ethanol-inducible form of liver microsomal cytochrome P-450 (P-450 LMeb), caused, compared to controls, 3-25-fold enhanced rates of CCl4-dependent lipid peroxidation or chloroform production in isolated liver microsomes. No significant differences were seen when the rate of CCl4-dependent lipid peroxidation was expressed relative to the amount of P-450 LMeb in the various types of microsomal preparations. In reconstituted membranous systems, this type of P-450 was a 100-fold more effective catalyst of CCl4 metabolism than either of the cytochromes P-450 LM2 or P-450 LM4. It is proposed that the induction of this isozyme provides the explanation on a molecular level for the synergism seen of ethanol on CCl4-dependent hepatotoxicity.  相似文献   

2.
Rabbit liver microsomal cytochrome P-450 was immobilized by entrapment in calcium alginate gel. Aminopyrine demethylation experiments showed that the immobilized enzyme system is highly active and exhibits an unimpaired functional stability as compared with crude microsomes. The alginate entrapped microsomes were employed in a fixed bed recirculation reactor, where aminopyrine was continuously demethylated. Such model enzyme reactor can be a useful tool for studying extracorporeal drug detoxification or preparative substrate conversion with microsomal enzyme systems.  相似文献   

3.
Cytochrome P-450LM2 was isolated from rabbit liver microsomes in a form which was shown to be homogeneous in AcA-22 Ultrogel and ultracentrifugation studies. The molecular mass determined by sedimentation equilibrium roughly corresponded to hexamer composed of 56 kDa monomers. Hexamer structure of the cytochrome was directly demonstrated by electron microscopic study. In the cytochrome P-450LM2 hexamer, monomers seem to be arranged in two layers (three monomers in the layer) in such a way that each monomer occupies a position at the vertices of a triangular antiprism with a 32 point group symmetry.  相似文献   

4.
The hydroxyl radical-mediated oxidation of 5,5-dimethyl-1-pyrroline N-oxide, benzene, ketomethiolbutyric acid, deoxyribose, and ethanol, as well as superoxide anion and hydrogen peroxide formation was quantitated in reconstituted membrane vesicle systems containing purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochromes P-450 LM2, P-450 LMeb , or P-450 LM4, and in vesicle systems devoid of cytochrome P-450. The presence of cytochrome P-450 in the membranes resulted in 4-8-fold higher rates of O-2, H2O2, and hydroxyl radical production, indicating that the oxycytochrome P-450 complex constitutes the major source for superoxide anions liberated in the system, giving as a consequence hydrogen peroxide and also, subsequently, hydroxyl radicals formed in an iron-catalyzed Haber-Weiss reaction. Depletion of contaminating iron in the incubation systems resulted in small or negligible rates of cytochrome P-450-dependent ethanol oxidation. However, small amounts (1 microM) of chelated iron (e.g. Fe3+-EDTA) enhanced ethanol oxidation specifically when membranes containing the ethanol and benzene-inducible form of cytochrome P-450 (cytochrome P-450 LMeb ) were used. Introduction of the Fe-EDTA complex into P-450 LMeb -containing incubation systems caused a decrease in hydrogen peroxide formation and a concomitant 6-fold increase in acetaldehyde production; consequently, the rate of NADPH consumption was not affected. In iron-depleted systems containing cytochrome P-450 LM2 or cytochrome P-450 LMeb , an appropriate stoichiometry was attained between the NADPH consumed and the sum of hydrogen peroxide and acetaldehyde produced. Horseradish peroxidase and scavengers of hydroxyl radicals inhibited the cytochrome P-450 LMeb -dependent ethanol oxidation both in the presence and in the absence of Fe-EDTA. The results are not consistent with a specific mechanism for cytochrome P-450-dependent ethanol oxidation and indicate that hydroxyl radicals, formed in an iron-catalyzed Haber-Weiss reaction and in a Fenton reaction, constitute the active oxygen species. Cytochrome P-450-dependent ethanol oxidation under in vivo conditions would, according to this concept, require the presence of non-heme iron and endogenous iron chelators.  相似文献   

5.
6.
For a set of 10 para-substituted toluene derivatives, three enzymatic constants were determined describing their interaction with purified rabbit liver microsomal P-450LM2. The three constants were the catalytic rate constant (Kcat) for hydroxylation, the apparent dissociation constant (Kd) for the enzyme-substrate complex, and the interaction energy (delta Gint) between the substrate-binding and spin-state equilibria. The para-substituents of the toluene substrates were: hydrogen, fluoro, bromo, chloro, iodo, nitro, methyl, cyano, isopropyl, and t-butyl. Linear free energy correlations were sought between the enzymatic constants and several physical constants of the individual substrate molecules. These correlations would be useful both for empirical prediction purposes and for insight into active site chemistry and mechanics. Catalytic rates were correlated by a linear combination of the Hansch pi hydrophobic constant and the Hammett sigma value. A deuterium isotope effect (DV) of 2.6 for d8-toluene compared to d0-toluene confirmed that hydrogen abstraction was partially rate-limiting with this series of substrates. Apparent dissociation constants were predicted by a linear combination of the molar volume and pi, while the spin-state interaction energies were best predicted by a linear combination of the Hansch pi hydrophobic constant and the reciprocal of the dielectric constant.  相似文献   

7.
8.
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2.  相似文献   

9.
10.
The complete covalent structure of the constitutive cytochrome P-450, form 3b, from rabbit liver microsomes was determined. The apocytochrome contains 490 amino acid residues in a single polypeptide chain, Mr = 55,860. Peptides from selective chemical and proteolytic cleavages were isolated by a combination of gel filtration and high performance liquid chromatography and sequenced by automated Edman degradation. Overlapping peptide sequences were used to deduce the complete sequence. The constitutive form is only 46% homologous to the phenobarbital-induced cytochrome P-450 (Heinemann, F. S., and Ozols, J. (1983) J. Biol. Chem. 258, 4195-4201) and contains a deletion at position 22. Strongly conserved regions include Cys435 and a previously identified tryptic peptide, residues 345-357. The distribution of hydrophobic segments is used to predict the membrane topology of the protein, and four possible orientations of this protein in the membrane are presented.  相似文献   

11.
The induction of the phenobarbital form of cytochrome P-450 by xenobiotics (phenobarbital, PB, hexachlorobenzene, HCB; hexachlorocyclohexane. HCCH, and aroclor 1016, Ar) was studied. It was demonstrated that administration of these compounds to animals is accompanied by an increase in the total cytochrome P-450, NADPH-cytochrome P-450 reductase, benzphetamine-N-demethylase and aldrin-epoxidase activities. Using monospecific antibodies against the cytochrome P-450 form isolated from PB-induced microsomes (PB-cytochrome P-450), a double immunodiffusion test revealed immunological identity of cytochrome P-450 forms induced by phenobarbital and other xenobiotics. The content of this form determined by rocket immunoelectrophoresis increased markedly and made up to 20-40% of the total cytochrome P-450 content. Antibodies against PB-cytochrome P-450 inhibited by 50-70% the benzphetamine-N-demethylase and aldrin-epoxidase activities, whereas the antibodies to methylcholanthrene-induced cytochrome P-450 were fairly ineffective. It was concluded that the chemically unrelated compounds induce in liver microsomes a cytochrome P-450 form, whose immunological properties and substrate specificity are close to the PB-form of cytochrome P-450.  相似文献   

12.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats.  相似文献   

13.
Spin state transitions of membrane-bound cytochrome P-450 were investigated by difference spectrophotometry using the 'D'-charge transfer absorbance band at 645 nm as a measure of the amount of hemin iron present in the 5-coordinated state. The magnitude of the 'D'-absorbance band in the absence of exogenous substrates, e.g., the concentration of native high spin cytochrome P-450, was evaluated from the difference in absorbance at 645 nm between ferric cytochrome P-450 and the carbon monoxide derivative of the pigment in its ferrous state. The contribution of the native high spin species to the total cytochrome P-450 content of microsomes was calculated to be between 40% and 65% after induction with phenobarbital and polycyclic hydrocarbons, respectively. Up to 80% of the cytochrome P-450 was found to be present in the high spin state after the addition of exogenous substrates. Further, the steady state concentrations of high spin cytochrome P-450, observed in the presence of reduced pyridine nucleotides, suggest that the rate limiting step for microsomal mixed function oxidation reactions is variable and dependent on the substrate under investigation.  相似文献   

14.
15.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55 000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7 alpha-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and beta-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7 alpha-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or beta-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

16.
Perfluorodecalin was incorporated into phospholipid liposomes and injected intraperitoneally in various dozes. The maximal cytochrome P-450 induction is reached 48 hours after perfluorodecalin injection. Cytochrome P-450 content increases 4 times after perfluorodecalin injection in dose of 0.6 ml/kg in homogenate, and 6 times after perfluorodecalin injection in a dose of 0.4 ml/kg in microsomes. Phenobarbital and perfluorodecalin induce several cytochrome P-450 isozymes and cause the appearance of a new isozyme with mass 56 kD absent in microsomes of intact CBA mice. Perfluorodecalin induction strongly increased the rate of NADPH-dependent aminopyrine nN-demethylation (6-7 times per mg of microsomal protein and 1.5 times per nmol cytochrome P-450). The rate of NADPH-dependent hydroxylation of aniline was not affected by perfluorodecalin induction.  相似文献   

17.
18.
Two cDNA clones, pHPah1 and pHPah2, encoding polycyclic hydrocarbon-inducible forms of rabbit liver microsomal cytochrome P-450 were isolated and their nucleotide sequences were determined. The inserts of pHPah1 and pHPah2 contained open reading frames specifying the entire primary structures of cytochrome P-450s, consisting of 518 and 516 amino acid residues, respectively. The deduced amino acid sequences for pHPah1 and pHPah2 are 76 and 73% homologous with rat P-450c and P-450d, respectively, and 96% homologous with rabbit P-450 forms 6 and 4, respectively. We conclude that pHPah1 and pHPah2 encode the rabbit counterparts of rat P-450c and P-450d, respectively. A region highly conserved in all species of cytochrome P-450 so far examined, called the HR2 region, can be detected in the pHPah1 and pHPah2 primary structures, but another conserved region, HR1, cannot be observed. Northern hybridization analysis of total RNAs from livers of untreated and drug-treated rabbits demonstrated that the pHPah1 and pHPah2 genes are expressed in untreated animals, induced considerably by administration of 3-methylcholanthrene or beta-naphthoflavone, and suppressed by phenobarbital and isosafrole.  相似文献   

19.
Treatment of rabbits with Triacetyloleandomycin (a currently used antibiotic in human therapy) at 1 mmol per kg of body weight daily for 5 days results in a significant induction of liver microsomal cytochrome P-450, (2.6 nmol/mg proteins). Electrophoresis in SDS polyacrylamide gels shows this increase in P-450 is associated to the appearance of a strong band in a zone located between the major bands of microsomes induced by phenobarbital and β-naphtoflavone (LM3 forms in Coon's terminology). Partial purification of this P-450 LM3 (TAO) was undertaken by chromatographic procedures (CM cellulose and hydroxylapatite). Its subunit molecular weight is 52 000; the absolute spectra in the oxidized, ferrous and CO-ferrous forms present maxima at 417, 536, and 570 nm; 415 and 548 nm; 450 and 555 nm respectively. Monooxygenase activity of LM3 (TAO) was compared with that of LM2 and LM4 in a reconstituted system containing NADPH cytochrome P-450 reductase and phosphatidylcholine; the activity of P-450 LM3 (TAO) was higher than that of LM2 and LM4 with chlorcyclizine as a substrate. According to these observations, LM3 (TAO) resembles LM3 (b), a constitutive form of untreated rabbit liver microsomes.  相似文献   

20.
Cytochrome P450IIB1 isolated from rat liver microsomes was incorporated into phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (10:5:1 w/w) liposomes. Trypsinolysis of proteoliposomes and sequencing of the membrane-bound domains revealed that only one peptide, comprising amino acid residues 1-21, spans the membrane. Modification of the N-terminal methionine by membrane-impermeable fluorescein isothiocyanate occurred with the protein in solution but not in proteoliposomes. We conclude that in proteoliposomes cytochrome P-450 spans the membrane only with amino acid residues 1-21, the N-terminal methionine facing the lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号