首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

2.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

3.
A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.  相似文献   

4.
Here, we report on the characterization of 22 clinical toxigenic V. cholerae non-O1/non-O139 strains isolated in the Middle Asia (Uzbekistan) in 1971–1990. PCR analysis has revealed that these strains contain the main virulence genes such as ctxA, zot, ace (CTXφ); rstC (RS1φ); tcpA, toxT, aldA (pathogenicity island VPI), but they lack both pandemic islands VSP-I and VSP-II specific to epidemic strains of O1 serogroup of El Tor biotype and O139 serogroup. Only two of the twenty two toxigenic strains have tcpA gene of El Tor type, one strain has tcpA gene of classical type, while nineteen other strains carry a new variant of this gene, designated as tcpA uzb. Nucleotide sequences analysis of virulence genes in toxigenic V. cholerae non-O1/non-O139 strains from Uzbekistan showed that they differ significantly from the sequences of these genes in epidemic O1 and O139 strain indicating that they belong to a separate line of evolution of virulent V. cholerae strains. For the first time it is shown that V. cholerae non-O1/non-O139 toxigenic strains of different serogroups may belong to the same clone.  相似文献   

5.
The presence of three major virulence genes toxR, tcpA and ctxA as well as expression of several putative virulence factors were compared in 12 Vibrio cholerae O139 and non-O1,non-O139 strains of clinical and environmental origin. All the strains possessed the gene encoding the regulatory protein TOXR. None of the non-O1, non-O139 strains as well as one of the O139 environmental strains carried the genes for ctxA and tcpA. Statistically significant differences in hemagglutinin and hemolysin production were observed amongst the strains depending on the source of their isolation. Expression of extracellular enzymes such as protease, elastase, neuraminidase, phospholipase A and phospholipase C, however, did not vary significantly from the groups of strains isolated from different sources.  相似文献   

6.
AIMS: The study was undertaken with the objective of understanding the virulence-associated genes of the CTX and TCP gene clusters in environmental isolates of Vibrio cholerae, an important human pathogen, isolated from the aquaculture environment. The involvement of the ompU gene in conferring bile resistance in these isolates was also evaluated. METHODS AND RESULTS: The V. cholerae isolates were tested by PCR and fluorescent antibody test for O1 (Ogawa and Inaba) and O139 serotypes. All isolates were found to be non-toxigenic V. cholerae confirmed by their positive PCR reaction for toxR but negative for ctx, zot and tcp gene. The hlyA gene was detected in 85% of the strains and ompU in 77%. The results on the bactericidal effect of bile salts suggest that ompU may play a role in conferring bile resistance in non-O1/non-O139 strains. CONCLUSION: The results of the study indicate that most environmental strains lacked the CTX and TCP gene clusters. However, most isolates had the hlyA gene indicating the potential of these environmental strains to cause mild gastroenteritis. It was also observed that strains lacking ompU showed less tolerance to bile salts. SIGNIFICANCE AND IMPACT OF THE STUDY: Information on virulence factors of V. cholerae associated with aquaculture environment and products would be of value in risk assessment for human health.  相似文献   

7.
Biotype-specific tcpA genes in Vibrio cholerae   总被引:4,自引:0,他引:4  
Abstract The tcpA gene, encoding the structural subunit of the toxin-coregulated pilus, has been isolated from a variety of clinical isolates of Vibrio cholerae , and the nucleotide sequence determined. Strict biotype-specific conservation within both the coding and putative regulatory regions was observed, with important differences between the El Tor and classical biotypes. V. cholerae O139 Bengal strains appear to have El Tor-type tcpA genes. Environmental O1 and non-O1 isolates have sequences that bind an E1 Tor-specific tcpA DNA probe and that are weakly and variably amplified by tcpA -specific polymerase chain reaction primers, under conditions of reduced stringency. The data presented allow the selection of primer pairs to help distinguish between clinical and environmental isolates, and to distinguish El Tor (and Bengal) biotypes from classical biotypes from classical biotypes of V. cholerae . While the role of TcpA in cholera vaccine preparations remains unclear, the data strongly suggest that TcpA-containing vaccines directed at O1 strains need include only the two forms of TcpA, and that such vaccines directed at (O139) Bengal strains should include the TcpA of El Tor biotype.  相似文献   

8.
The genotype and antibiotic resistance pattern of the toxigenic Vibrio cholerae strains associated with cholera outbreaks vary frequently. Fifty-one V. cholerae strains isolated from cholera outbreaks in Chennai (2002–2005) were screened for the presence of virulence and regulatory genes by multiplex polymerase chain reaction (PCR) assay. Genotyping of the isolates was done by VC1 primers derived from enterobacterial repetitive intergenic consensus (ERIC)-related sequence in V. cholerae. All the isolates possessed toxigenic genes, such as ctxA, ctxB, tcpA, ace, ompU, toxR and zot. Two different El Tor genotypes and one O139 genotype could be delineated by VC1-PCR. One of the El Tor genotypes was similar to the El Tor strains isolated from Bhind district and Delhi during 2004. Antibiotic susceptibility testing revealed greater variability among the isolates tested. All the isolates were found to be susceptible to norfloxacin, ciprofloxacin and tetracycline. Thiry-three per cent of the isolates were found to be resistant to more than 4 antibiotics and could be termed as multiple antibiotic resistant. Coexistence of O139 serogroup along with the El Tor biotype could be identified among the strains recovered during the period 2002–2004. The O139 isolates were found to be more susceptible to the antibiotics tested when compared to the El Tor isolates.  相似文献   

9.
AIMS: To determine the presence of Vibrio cholerae in different areas of Argentina in three sample types, to determine the composition of planktonic communities in areas at which this pathogen was detected and to characterize the virulence properties and antimicrobial resistance of the recovered environmental isolates. METHODS AND RESULTS: Water and plankton samples were collected in marine, brackish and freshwater environments. Vibrio cholerae non-O1, non-O139 was isolated in 36.1% of the samples analysed. The micro-organism was detected in freshwater but not in marine or brackish samples. No relationship was found between isolation of V. cholerae and presence of any species of plankton. All the isolates presented very similar virulence profiles by PCR, lacking ctxA and tcpA El Tor and containing hlyA (98.7%), rtxA (99.0%), toxR (98.7%) and stn-sto (1.9%). Resistance to ampicillin was found in both Tucumán (21%) and Buenos Aires isolates (45%). CONCLUSIONS: We identified two geographic areas in Argentina where V. cholerae was present: freshwaters of the rivers from Tucumán and the Río de la Plata. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of V. cholerae strains in the environment, carrying both virulence factors and resistance to antimicrobial agents, highlight the need for a continuous and active surveillance of this pathogen.  相似文献   

10.
Abstract The polymerase chain reaction has been used to differentiate the gene which encodes the toxin co-regulated pili ( tcpA ) of the El Tor and classical biotypes of Vibrio cholerae O1. The same PCR primers were applied to strains belonging to non-O1 serogroups that produced cholera toxin. The size of fragment amplified was either identical to the tcpA of biotype El Tor (471 bp) or to the tcpA of biotype classical (617 bp). All strains belonging to the novel epidemic serogroup O139 generated a 471-bp fragment identical to El Tor tcpA . The present study suggests that there may be an association between non-O1 serogroup and tcpA type.  相似文献   

11.
A collection of ten strains of Vibrio cholerae O139, comprising six isolates from Eichhornia crassipes, two from water of the River Ganga, and one each from a well and a hand pump, were characterized. All the strains carried the CTX genetic element (ctxA, zot, and ace) except for the st gene and carried structural and regulatory genes for toxin-coregulated pilus (tcpA, tcpI, and toxR), adherence factor (ompU), and accessory colonization factor (acfB); all produced cholera toxin (CT). These strains were resistant to trimethoprim, sulfamethoxazole, streptomycin, and to the vibriostatic agent pteridine. Results obtained by ribotyping and enterobacterial repetitive intergenic consensus sequence-PCR fingerprint analysis indicate that multiple clones of toxigenic-pathogenic V. cholerae O139 were present in the aquatic environment.  相似文献   

12.
多重实时PCR检测产毒素性霍乱弧菌和副溶血弧菌   总被引:3,自引:0,他引:3  
设计引物和探针,优化多重实时PCR条件,以同时检测霍乱弧菌霍乱毒素基因ctxA、副溶血弧菌种特异性基因gyrB和耐热肠毒素基因tdh。该多重实时PCR方法检测产毒素性的O1群(3株)和O139群(44株)霍乱弧菌菌株、不产毒素的O1群(12株)和O139群(6株)及非O1非O139群(7株)霍乱弧菌菌株的ctxA,阳性和阴性结果与普通PCR检测结果100%符合;检测副溶血弧菌种特异性gyrB,116株副溶血弧菌均阳性,而9株其它细菌和72株霍乱弧菌均阴性;检测tdh的阳性和阴性结果也与普通PCR结果完全一致。另外还建立了检测副溶血弧菌菌株trh1和trh2的单重实时PCR方法。  相似文献   

13.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

14.
Toxigenic Vibrio cholerae, the cause of cholera, is a native flora of the aquatic environment which is transmitted through drinking water and still remains the leading cause of morbidity and mortality in many developing countries including Thailand. The culture method (CM), which is routinely used for assessing water quality, has not proven as efficient as molecular methods because the notorious pathogen survives in water mostly in a non-culturable state. We employed duplex-polymerase chain reaction (duplex-PCR) for detection of tcpA and ctxA genes in toxigenic V. cholerae, and compared PCR detection with CM in various waters of Khon Kaen Municipality, Thailand. We also evaluated the effect of different pre-PCR conditions on the results of ctxA and tcpA detection including: 1) water filtered and enriched in alkaline peptone water (APW) for 3 h before PCR, 2) water filtered without enrichment before PCR, and 3) use of only enrichment in APW for 6 h before PCR. Of the 96 water samples (taken from waste-water, potable and waste-water from patients' houses, and from rivers) tested, 48 (50%) were positive for ctxA and tcpA by duplex-PCR, whereas only 29 (30%) were positive for V. cholerae by CM. Of the 29 V. cholerae isolated by CM, 2 (7%) were toxigenic V. cholerae belonging to serovar O1, while the rests were non-O1/ non-O139. Results revealed, therefore, that ctxA and tcpA-targeted duplex PCR is more sensitive than CM for detection of toxigenic V. cholerae from water samples because CM detected much less toxigenic V. cholerae than the non-toxigenic V. cholerae. Template DNA as low as 100 fg or 23 cells of V. cholerae in the water sample was detected in duplex PCR. Pre-PCR filtration followed by enrichment for 3 h significantly increase in the efficiency of duplex-PCR detection of toxigenic V. cholerae.  相似文献   

15.
Polymerase chain reaction (PCR) detected the presence of various genes associated with virulence in genome of strains V. cholerae eltor isolated in Turkmenistan territory during epidemic and epidemic-free perios. It was found that a complete set of virulence genes (ctxA+, tcpA+ and toxR+) contained strains isolated from patients, carriers and environment only in cholera epidemics. Strains isolated from the environment in the period free of epidemics did not contain ctxA and tcpA in 78.2% of cases, but 5.2% of the strains carried a complete set of virulence genes. There were also nontoxigenic strains containing genes tcpA and toxR. Such strains were isolated from the environment (16.6%) and vibrion carriers (42.9%). Isolated were also strains V.cholerae eltor carrying bacteriophage CTX phi with incomplete set of virulence genes and having genotype ctxA-, ace+ and zot+. Almost all the strains ctxA-, tcpA+ carry attRS1-site in genome. This shows that such strains may transform into toxigenic as a result of infection with bacteriophage CTX phi.  相似文献   

16.
Zymovars analysis also known as multilocus enzyme electrophoresis is applied here to investigate the genetic variation of Vibrio cholerae strains and characterise strains or group of strains of medical and epidemiological interest. Fourteen loci were analyzed in 171 strains of non-O1 non-O139, 32 classical and 61 El Tor from America, Africa, Europe and Asia. The mean genetic diversity was 0.339. It is shown that the same O antigen (both O1 and non-O1) may be present in several genetically diverse (different zymovars) strains. Conversely the same zymovar may contain more than one serogroup. It is confirmed that the South American epidemic strain differs from the 7th pandemic El Tor strain in locus LAP (leucyl leucyl aminopeptidase). Here it is shown that this rare allele is present in 1 V. mimicus and 4 non-O1 V. cholerae. Non toxigenic O1 strains from South India epidemic share zymovar 14A with the epidemic El Tor from the 7th pandemic, while another group have diverse zymovars. The sucrose negative epidemic strains isolated in French Guiana and Brazil have the same zymovar of the current American epidemic V. cholerae.  相似文献   

17.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

18.
The role of biofilm as a microenvironment of plankton-associated Vibrio cholerae was investigated using plexiglass as a bait. A total of 72 biofilm samples were tested using culture, direct fluorescent antibody (DFA) and molecular techniques following standard procedures. Culturable V. cholerae (smooth and rugose variants) were isolated from 33% of the samples. V. cholerae O1 were detected by FA technique throughout the year except April and June. All V. cholerae O1 isolates were positive for tcpA, ctxA and ace genes while V. cholerae non-O1, non-O139 isolates lacked these genes. V. cholerae O1 (both Inaba and Ogawa) strains had identical ribotype pattern (R1), but V. cholerae non-O1, non-O139 had different ribotype patterns. All V. cholerae O1 strains were resistant to vibrio-static compound (O/129). All V. cholerae O1 except one were resistant to trimethoprime-sulphamethoxazole, streptomycin, nalidixic acid and furazolidone but sensitive to ciprofloxacin, and tetracycline. This study indicates that plexiglass can act as a bait to form biofilm, a microenvironment that provides shelter for plankton containing V. cholerae in the aquatic environment of Bangladesh.  相似文献   

19.
Pang B  Zheng X  Diao B  Cui Z  Zhou H  Gao S  Kan B 《PloS one》2011,6(8):e24267
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.  相似文献   

20.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号