首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infantile-onset glycogen storage disease type II, or Pompe disease, results from a genetic deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Sequencing of the cDNA from a cell line (GM 244) derived from a patient with Pompe disease demonstrated a T953-to-C transition that predicted a methionine-to-threonine substitution at codon 318. The basepair substitution resulted in loss of restriction-endonuclease sites for NcoI and StyI. Analysis of genomic DNA revealed both a normal and an abnormal NcoI fragment, indicating that the patient was a genetic compound. NcoI and StyI digestion of cDNA, amplified by PCR from reverse-transcribed RNA, demonstrated that greater than 95% of the GAA mRNA in GM 244 was derived from the allele carrying the missense mutation. The missense mutation was uncommon, since it was not detected in 37 additional GAA-deficient chromosomes, as determined by digestion of genomic DNA with NcoI and hybridization. The amino acid substitution predicts a new potential site for N-linked glycosylation, as well as major changes in secondary structure of the protein. We could confirm that the mutation was responsible for the enzyme deficiency by demonstrating that a hybrid minigene containing the mutation did not express GAA enzyme activity after transient gene expression. We have therefore now provided the first identification of a single-basepair missense mutation in a patient with Pompe disease and furthermore have demonstrated that the patient is a genetic compound with the second allele barely expressing mRNA.  相似文献   

2.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   

3.
Fucosidosis is an autosomal recessive, lysosomal storage disease featured by deficient activity of alpha-L-fucosidase. Lymphoid cell lines from a fucosidosis patient (JT) and a healthy individual (control) contained alpha-L-fucosidase mRNA of the same size, 2.3 Kb, as determined by Northern blot analysis. cDNA was prepared from alpha-L-fucosidase mRNA of JT and control cells and each cDNA was amplified by the polymerase chain reaction. Direct DNA sequencing of the amplified products revealed a single mutation in JT, a G1141-->T transition. This changed the codon (GAA) for Glu-375 to a stop codon (UAA). Amplification and sequencing of the area containing the G1141-->T transition in genomic DNA of JT and control cells demonstrated that the mutation was homozygous in JT. Analysis of cDNA and genomic DNA derived from lymphoid cells of mother JT revealed her to be heterozygous (G and T) at position 1141. The G1141-->T mutation is probably responsible for disease in JT.  相似文献   

4.
Summary Ehlers-Danlos syndrome type IV, an inherited connective tissue disease, is usually caused by mutations in the gene for type III collagen. Here, we describe a glycine to glutamic acid substitution in a patient with this syndrome. Previous studies had shown that fibroblasts from the patient, his mother and brother secreted a reduced amount of type III collagen and also produced an overmodified form of the protein that was preferentially retained intracellularly. Peptide mapping experiments indicated that the mutation was located within cyanogen bromide peptide 9. This was supported by chemical cleavage analysis and sequencing of cDNA encoding this region. Allele-specific oligonucleotide hybridisation of genomic DNA confirmed that a G to A mutation converted Gly 847 to Glu. The mutation was present in two other affected family members and also in a third, who was clinically unaffected. Further analysis of this unaffected individual revealed reduced mutant:normal ratios in DNA obtained from both blood and hair samples, showing that she was mosaic for the mutation.  相似文献   

5.
BACKGROUND: X-linked agammaglobulinemia (XLA) is a severe, life-threatening disease characterized by failure of B cell differentiation and antibody production and is associated with mutations in Bruton's tyrosine kinase (Btk). The proband in this study is a 51-year-old male presenting with chronic nasal congestion, recurrent sinusitis, sporadic pneumonia, and pronounced B cell deficiency. A family history suggestive of an X-linked immunodeficiency disease was noted. MATERIALS AND METHODS: cDNA was synthesized from mRNA prepared from peripheral blood mononuclear leukocytes. Btk cDNA amplified by polymerase chain reaction (PCR) was subjected to both manual and automated DNA sequencing. A DNA sequence corresponding to exons 6 and 7 of Btk was amplified from genomic DNA. Western blot analysis employed both polyclonal and monoclonal antibodies to Btk and reaction patterns were obtained both by chemiluminescence and an in vitro kinase assay. RESULTS: A mutation (Cys145-->Stop) was identified in Btk cDNA and was confirmed in amplified exon 6 of genomic DNA from both the proband and an affected nephew. Neither Btk nor a truncated peptide was detected in Western blot analyses of peripheral blood mononuclear cell lysates. CONCLUSIONS: The C145A mutation reported here is novel. This family study is extraordinary in that affected male members who did not undergo aggressive medical management either succumbed to complications in early life or survived into later life. The proband is the oldest de novo diagnosed patient with XLA reported to date.  相似文献   

6.
Summary A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed. All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing their obligate carrier status. Allelic homozygosity in the patient and heterozygosity for the mutation in the parents were established by a modified PCR reaction, introducing a cleavage site for the restriction endonuclease NcoI into amplified genomic DNA containing G985. The same assay consistently revealed A985 in genomic DNA from 26 control individuals. The A to G mutation was introduced into an E. coli expression vector producing mutant MCAD, which was demonstrated to be inactive, probably because of the inability to form active tetrameric MCAD. All the experiments are consistent with the contention that the G985 mutation, resulting in a lysine to glutamate shift at position 329 in the MCAD polypeptide chain, is the genetic cause of MCAD deficiency in this family. We found the same mutation in homozygous form in 11 out of 12 other patients with verified MCAD deficiency.  相似文献   

7.
A mutation involving an A-to-G nucleotide replacement at position 985 of the medium-chain acyl-CoA dehydrogenase (MCAD) cDNA was found in homozygous form in 18 unrelated MCAD-deficient families and in heterozygous form in 4 families. By PCR amplification and sequencing of cDNA from a compound heterozygote, we have detected a new mutation in an MCAD-deficient patient in whom one MCAD allele produces mRNA that is missing 4 bp in the MCAD cDNA, while the other allele carries the A-to-G-985 mutation. The presence of this 4-bp deletion was confirmed in the patient's genomic DNA by dot-blot hybridization with allele-specific oligonucleotide probes and by restriction analysis of PCR products. A rapid screening test for this 4-bp deletion was developed, based on mismatched primer PCR amplification. The deletion created a new restrictive-enzyme site which yielded two DNA fragments. The 4-bp deletion was not found in the three remaining MCAD chromosomes not harboring the A-to-G-985 mutation, nor it was present in 20 chromosomes from 10 unrelated normal Caucasians. The PCR-based method for screening these two mutations can detect over 93% of all MCAD mutations.  相似文献   

8.
Chronic granulomatous disease (CGD) is characterized by the failure of activated phagocytes to generate superoxide. Defects in at least four different genes lead to CGD. Patients with the X-linked form of CGD have mutations in the gene for the beta-subunit of cytochrome b558 (gp91-phox). Patients with a rare autosomal recessive form of CGD have mutations in the gene for the alpha-subunit of this cytochrome (p22-phox). Usually, this leads to the absence of cytochrome b558 in the phagocytes (A22(0) CGD). We studied the molecular defect in five European patients from three unrelated families with this type of CGD. P22-phox mRNA was reverse-transcribed, and the coding region was amplified by PCR in one fragment and sequenced. Three patients from one family, with parents that were first cousins, were homozygous for a single base substitution (G-297-->A) resulting in a nonconservative amino acid change (Arg-90-->Gln). This mutation was previously found in a compound heterozygote A22(0) CGD patient. Another patient, also from first-cousin parents, was homozygous for an A-309-->G mutation in the open reading frame that predicts a nonconservative amino acid replacement (His-94-->Arg). The fifth patient was also born from a first-cousin marriage and was shown to be homozygous for the absence of exon 4 from the cDNA. In this patient, a G-->A substitution was found at position 1 of intron 4 in the genomic DNA. Therefore, the absence of exon 4 in the cDNA of this patient is due to a splicing error.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Characterization of mutations in Gaucher patients by cDNA cloning.   总被引:16,自引:6,他引:10       下载免费PDF全文
Mutated cDNA clones containing the entire coding sequence of human glucocerebrosidase were isolated from libraries originated from Gaucher patients. Sequence analysis of a mutated cDNA derived from a type II Gaucher patient revealed a C-to-G transversion causing a substitution of an arginine for a proline at residue 415. This change creates a new cleavage site for the enzyme HhaI in the mutated cDNA. Allele-specific oligonucleotide hybridization made it possible to show that this mutation exists in the genomic DNA of the patient. From a cDNA library originated from a type I Gaucher patient, a mutated allele was cloned that contains a T-to-C transition causing a substitution of proline for leucine at residue 444 and creating a new NciI site. This mutation is identical to that described by S. Tsuji and colleagues in genomic DNA from type I, type II, and type III patients. Since the new NciI site generates RFLP, it was used to test the existence of this mutated allele in several Gaucher patients by Southern blot analysis. This allele was found in type I (Jewish and non-Jewish), type II, and type III Gaucher patients. These findings led us to conclude that the patient suffering from type II disease (denoted GM1260) carried both mutations described above. Any one of the amino acid changes described reduces the glucocerebrosidase activity as tested by transfection of COS cells with expression vectors harboring the mutated cDNAs. The base changes in the two mutated cDNAs do not affect the electrophoretic mobility of the corresponding polypeptides on an SDS polyacrylamide gel.  相似文献   

11.
Lesch-Nyhan syndrome caused by a complete deficiency of hypoxanthine guanine phosphoribosyltransferase (HPRT) is the result of a heterogeneous group of germ line mutations. Identification of each mutant gene provides valuable information as to the type of mutation that occurs spontaneously. We report here a newly identified HPRT mutation in a Japanese patient with Lesch-Nyhan syndrome. This gene, designated HPRT Tokyo, had a single nucleotide change from G to A, as identified by sequencing cDNA amplified by the polymerase chain reaction. Allele specific oligonucleotide hybridization analysis using amplified genomic DNA showed that the mutant gene was transmitted from the maternal germ line. This mutation would lead to an amino acid substitution of Asp for Gly at the amino acid position 140 located within the putative 5-phosphoribosyl-1-pyrophosphate (PRPP) binding region. Missense mutations in human HPRT deficient patients thus far reported tend to accumulate in this functionally active region. However, a comparison of the data suggested that both missense and synonymous mutations can occur at any coding sequence of the human germ line HPRT gene, but that a limited percentage of all the missense mutations cause disease. The probability that a mutation will cause disease tends to be higher when the missense mutation is within a functionally important sequence.  相似文献   

12.
In this study, we have identified a novel mechanism of mutation involving translocation between the HPRT1 loci and other loci on the X chromosome. In HRT-25's cDNA obtained from a patient with Lesch-Nyhan syndrome, the upstream region of exon 3 was amplified, but the full-length region was not amplified. The use of 3' rapid amplification of cDNA ends polymerase chain reaction (3'RACE-PCR) for HRT-25 revealed part of intron 3 and an unknown sequence which have not identified the HPRT1 gene starting at the 3' end of exon 3. We analyzed HPRT1 genomic DNA in order to confirm the mutation with the unknown sequence in the genomic DNA. Unknown sequence compared through BLAST analysis of human genome (NCBI; http://www.ncbi.nlm.nih.gov/BLAST/) showed that at least 0.5 to 0.6-Mb telomeric to HPRT1 on chromosome Xq where located near LOC340581. This study provides the molecular basis for the involvement of genomic instability in germ cells.  相似文献   

13.
A major challenge in genetics is identifying the basis of human heritable disease. We describe an "exon scanning" technique which surveys exons in genomic DNA for sequence alterations. By hybridizing genomic DNA to RNA probes derived from cDNAs, we can use RNase A to survey entire coding regions, comprising exons spread across extensive regions of genomic DNA, for mutations associated with genetic disease. Exon scanning of the beta-globin locus in the DNA of patients with 12 different hemoglobinopathies detected all of the culpable single base substitutions and deletions, but not single base insertions. Our analysis also revealed unsuspected polymorphisms and corrected a diagnosis originally based on hemoglobin electrophoresis. Exon scanning of the ornithine aminotransferase gene in a gyrate atrophy patient detected and localized a mutation in the sixth exon. Subsequent PCR amplification and sequencing characterized this as a missense mutation (proline----glutamine). Exon scanning of genomic DNA for sequence alterations, in combination with PCR amplification and sequencing, should be a generally useful strategy for evaluating suspect genes in disorders of unknown etiology, as well as for clinical diagnosis.  相似文献   

14.
The crucial role of the human platelet fibrinogen receptor in maintaining normal hemostasis is best exemplified by the autosomal recessive bleeding disorder Glanzmann thrombasthenia (GT). The platelet fibrinogen receptor is a heterodimer composed of glycoproteins IIb (GPIIb) and IIIa (GPIIIa). Platelets from patients with GT have a quantitative or qualitative abnormality in GPIIb and GPIIIa and can neither bind fibrinogen nor aggregate. Very few genetic defects have been identified that cause this disorder. We describe a kindred with GT in which the affected individuals have a unique inversion-deletion mutation in the gene for GPIIIa. Patient platelets lacked both GPIIIa protein and mRNA. Southern blots of patient genomic DNA probed with an internal 1.0-kb GPIIIa cDNA suggested a large rearrangement of this gene but were normal when probed with small GPIIIa cDNA fragments that were outside the mutation. Cytogenetics and pulsed-field gel analysis of the GPIIIa gene were normal, making a translocation or a very large rearrangement unlikely. Additional Southern analyses suggested that the abnormality was not a small insertion. We constructed a patient genomic DNA library and isolated fragments containing the 5' and 3' breakpoints of the mutation. The nucleotide sequence from these genomic clones was determined and revealed that, relative to the normal gene, the mutant allele contained a 1-kb deletion immediately preceding a 15-kb inversion. The DNA breaks occurred in two inverted and one forward Alu sequence within the gene for GPIIIa and in the left, right, and left arms, respectively, of these sequences. There was a 5-bp repeat at the 3' terminus of the inversion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
3-Ketothiolase deficiency (3KTD) is the result of a deficiency in mitochondrial acetoacetyl-CoA thiolase (T2). The molecular basis of 3KTD was analyzed in a patient (GK10) and his family at the protein, cDNA and gene levels. Protein analyses showed that GK10's T2 protein was undetectable in fibroblasts even with the pulse-protein labeling method and that his parents were carriers of 3KTD. Complementary DNA analyses with PCR showed that T2 cDNA in the patient lacked the normal exon 11 sequence and that his parents were obligatory carriers of the DNA sequence which canceled exon 11. When the PCR-amplified genomic fragments around exon 11 were sequenced, an AG to AC mutation at the 3' splice site of intron 10 was detected. This mutation is presumed to be responsible for exon 11 skipping.  相似文献   

16.
We have cloned the human genomic DNA and the corresponding cDNA for the gene which complements the mutation of tsBN51, a temperature-sensitive (Ts) cell cycle mutant of BHK cells which is blocked in G1 at the nonpermissive temperature. After transfecting human DNA into TsBN51 cells and selecting for growth at 39.5 degrees C, Ts+ transformants were identified by their content of human AluI repetitive DNA sequences. Following two additional rounds of transfection, a genomic library was constructed from a tertiary Ts+ transformant and a recombinant phage containing the complementing gene isolated by screening for human AluI sequences. A genomic probe from this clone recognized a 2-kilobase mRNA in human and tertiary transformant cell lines, and this probe was used to isolate a biologically active cDNA from the Okayama-Berg cDNA expression library. Sequencing of this cDNA revealed a single open reading frame encoding a polypeptide of 395 amino acids. The deduced BN51 gene product has a high proportion of acidic and basic amino acids which are clustered in four hydrophilic domains spaced at 60- to 80-amino-acid intervals. These domains have strong sequence homology to each other. Thus, the tsBN51 protein consists of periodic repetitive clusters of acidic and basic amino acids.  相似文献   

17.
We have amplified the cDNA for the transacylase (E2) subunit of the branched-chain alpha-ketoacid dehydrogenase (BCKAD) complex from a thiamine-responsive MSUD cell line (WG-34) by the polymerase chain reaction. Sequencing of the amplified WG-34 cDNA showed a 17-bp insertion (AAATACCTTGTTACCAG) apparently resulting from an aberrant splicing of the E2 gene, and a missense (T----G) mutation that changes Phe215 to Cys in the E2 subunit. The existence of these two mutations was confirmed by probing the amplified E2 cDNA or genomic DNA with allele-specific oligonucleotides. The above results support the thesis that the thiamine-responsive MSUD patient (WG-34) is a compound heterozygote at the E2 locus. The implication of the E2 mutations for the thiamine-responsiveness observed in this patient is discussed.  相似文献   

18.
Dimethylglycine dehydrogenase (DMGDH) (E.C. number 1.5.99.2) is a mitochondrial matrix enzyme involved in the metabolism of choline, converting dimethylglycine to sarcosine. Sarcosine is then transformed to glycine by sarcosine dehydrogenase (E.C. number 1.5.99.1). Both enzymes use flavin adenine dinucleotide and folate in their reaction mechanisms. We have identified a 38-year-old man who has a lifelong condition of fishlike body odor and chronic muscle fatigue, accompanied by elevated levels of the muscle form of creatine kinase in serum. Biochemical analysis of the patient's serum and urine, using (1)H-nuclear magnetic resonance NMR spectroscopy, revealed that his levels of dimethylglycine were much higher than control values. The cDNA and the genomic DNA for human DMGDH (hDMGDH) were then cloned, and a homozygous A-->G substitution (326 A-->G) was identified in both the cDNA and genomic DNA of the patient. This mutation changes a His to an Arg (H109R). Expression analysis of the mutant cDNA indicates that this mutation inactivates the enzyme. We therefore confirm that the patient described here represents the first reported case of a new inborn error of metabolism, DMGDH deficiency.  相似文献   

19.
German cystic fibrosis patients were screened for mutations in exon 21 of the cystic fibrosis transmembrane conductance regulator gene by a non-radioactive variation of the single-strand conformation polymorphism technique. Asymetrie polymerase chain reaction amplification was used to produce single strands of exon-containing genomic sequences that were analyzed on polyacrylamide gels subsequently stained with ethidium bromide. This rapid technique led to the identification of a novel mutation, a 1-bp deletion at position 4035(A) of the cDNA sequence. The patient, who is also heterozygous for the AF508 mutation, exhibits an intermediate form of the disease.  相似文献   

20.
Using antibodies directed against the amino-terminus of dystrophin, we identified a truncated protein in a Duchenne muscular dystrophy patient. Antibodies directed against the carboxy-terminus failed to identify any cross-reactive material, a result consistent with premature termination of dystrophin translation. The estimated molecular mass of 126 kDa predicted the approximate location of the mutation in the mRNA and in the gene. Sequencing of cloned PCR products from patient muscle cDNA revealed a nonsense mutation, which was confirmed by direct sequencing of amplified patient genomic DNA. The mutation, a G to T transversion, at position 3714 changes a glutamic acid codon to an Amber stop codon. Translation of mRNA containing this mutation would be expected to result in a truncated protein with a molecular mass of 133 kDa, in close agreement with the 126 kDa estimated by Western blot analysis. This is the first reported case of a point mutation in this very large human gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号