首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨Kun  丁虎 《生理学报》1991,43(4):345-351
The norepinephrine (NE) and angiotensin II (A II) contents in the brain regions of SHR and WKY (Wistar Kyoto) rats at different ages were determined by fluorospectrophotometry and radioimmunoassay. The systolic blood pressure (SBP) of the rats was measured indirectly with a tail cuff technique in conscious state. The results were as follows: There was no significant difference in the central A II and NE contents between SHR and WKY rats at 8-week age. Since 12th week age the SBP of SHR has increased gradually, up to 16th to 20th week and then maintained steady level. Whereas there was no significant change of SBP in WKY rats in the same span of age. In the early and late states of hypertension the A II contents in the medulla oblongata, pons, hypothalamus and nucleus caudatus of SHR were markedly higher than those of the age-matched WKY rats. But the change of NE content of SHR in the early stage showed a different picture as compared with that of WKY rats, i.e., NE decreased in medulla oblongata and anterior hypothalamus but increased in pons, posterior hypothalamus and nucleus caudatus. However, in the late stage there was no such significant difference between SHR and WKY rats. Consequently, it is suggested that the central A II and NE participated in the development of hypertension of SHR, and that the maintenance of hypertension is mainly dependent upon the increased A II content. Microinjection of captopril or 6-OHDA in the lateral cerebroventricle of SHR elicited a decrease of BP and reduction of both A II and NE contents in the medulla and hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

3.
Regional Development of Glutamate Dehydrogenase in the at Brain   总被引:1,自引:0,他引:1  
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.  相似文献   

4.
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.  相似文献   

5.
The effect of adrenaline (0.15 i.p./kg b.w.) and of the synthetic glucocorticoid triamcinolone (40 mg i.p./kg b.w.) on cytochrome oxidase activity, the terminal enzyme of the cytochrome system, was studied in homogenates of the cerebral cortex, subcortical formations (including the basal ganglia, the thalamus and the hypothalamus), the medulla oblongata and the liver of 5-day-old and adult rats. Activity in the above mentioned homogenates was measured polarographically 15 and 30 min after administering adrenaline or 48 h after administering triamcinolone. Fifteen minutes after its injection, adrenaline caused a statistically significant drop in cytochrome oxidase activity in the cerebral cortex, subcortical formations and liver of 5-day-old rats. The decrease still persisted 30 min after administration of the hormone, but was intensified only in the liver. In adult rats, on the other hand, a significant increase in activity was observed in the cerebral cortex and liver after adrenaline. Triamcinolone had no effect on cytochrome oxidase activity in any of the given parts of the brain in either young or adult rats. It significantly stimulated cytochrome oxidase activity in the liver of 5-day-old rats, but severely inhibited it in the liver of adult rats.  相似文献   

6.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

7.
The effect of ovariectomy and estrogen treatment on the brain acetylcholinesterase activity and cognition in rats was investigated in this study. Ovariectomized and nonovariectomized rats were treated subcutaneously with estradiol dipropionate for 8 d. In the single-trial, passive-avoidance test all the groups showed significant learning and retention of memory as evident by the increase in transfer latency time in trial 2 as compared with trial 1. No-transfer response was significantly increased in the estradiol-dipropionate-treated ovariectomized (80%) and nonovariectomized (60%) group as compared with the ovariectomized (30%) group. Specific activity of acetylcholinesterase was assayed spectrophotometrically in salt-soluble and detergent-soluble fractions of various brain areas: frontal cortex, cerebral cortex, striatum, hippocampus and hypothalamus, thalamus, pons, medulla, and cerebellum. The effect of ovariectomy and estradiol dipropionate was varied in both fractions of these brain areas. Estradiol dipropionate treatment could restore the acetylcholinesterase activity to the control level only in the detergent-soluble fraction of hypothalamus and salt-soluble fraction of hypothalamus, thalamus, and medulla in ovariectomized rats. The results indicate that ovariectomy alters acetylcholinesterase activity in the brain areas but not in a uniform manner and affects only qualitative aspects of cognitive function, which could be improved by estrogen supplementation.  相似文献   

8.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

9.
H N Bhargava  S Das  M Bansinath 《Peptides》1987,8(2):231-235
The binding of [3H] [3-MeHis2] thyrotropin releasing hormone [( 3H]MeTRH) to brain membranes prepared from 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [3H]MeTRH bound specifically to rat brain membranes at a single high affinity site. The density (Bmax value) of [3H]MeTRH binding sites was significantly greater (28%) in SHR rats compared to WKY rats. The apparent dissociation constants (Kd values) for the binding of [3H]MeTRH in SHR and WKY rats did not differ. Binding in the various brain regions revealed that the density of [3H]MeTRH was highest in the hypothalamus followed in decreasing order by pons + medulla, midbrain, cortex and striatum. The binding of [3H]MeTRH was approximately 25% greater in cortex, hypothalamus and striatum of SHR rats in comparison to WKY rats. The binding in pons + medulla, midbrain and pituitary of SHR and WKY rats did not differ. To assess the significance of increased binding sites for [3H]MeTRH in some brain regions of SHR rats, the binding studies were carried out during normotensive and hypertensive stages of postnatal age in the two strains. In 3 and 4 week old SHR rats there was neither an increase in blood pressure nor any increase in [3H]MeTRH binding in the hypothalamus and striatum as compared to age matched WKY rats. With the development of elevated blood pressure at 6 weeks, an increase in [3H]MeTRH binding in the hypothalamus and striatum of SHR rats in comparison to the tissues from WKY rats was observed. The results provide, for the first time, evidence for a parallel increase in the density of brain TRH receptors with elevation of blood pressure, and suggest that brain TRH receptors may play an important role in the pathophysiology of hypertension.  相似文献   

10.
Several neurochemical parameters were studied in brain regions of rats chronically treated with a high concentration of manganese chloride (20 mg MnCl2.4H2O per ml. of drinking water) throughout development until adulthood. Large increases in Mn accumulation were found in all brain regions (hypothalamus, +530%; striatum, +479%; other regions, +152 to +250%) of Mn-treated adult rats. In these animals, Ca levels were decreased (–20 to –46%) in cerebellum, hypothalamus, and cerebral cortex but were increased (+186%) in midbrain. Mg levels were decreased (–12 to –32%) in pons and medulla, midbrain, and cerebellum. Fe levels were increased (+95%) in striatum but were decreased (–28%) in cerebral cortex. Cu levels were increased (+43 to +100%) in pons and medulla and striatum but Zn levels were decreased (–30%) in pons and medulla. Na levels were increased (+22%) in striatum but those of K and Cl remained unchanged. Type A monoamine oxidase activities were decreased (–13 to –16%) in midbrain, striatum, and cerebral cortex, but type B monoamine oxidase activities decreased (–13%) only in hypothalamus. Acetylcholinesterase activities were increased (+20 to +22%) in striatum and cerebellum. The results are consistent with out hypothesis that chronic manganese encephalopathy not only affects brain metabolism of Mn but also that of other metals.We dedicate this paper to Professor Alan N. Davison. Professor Davison has conducted pioneering research in several important areas including: brain development and myelination, aging and Alzheimer's disease, and multiple sclerosis. He encouraged us to investigate the neurochemical mechanisms of neurotoxicity of metal ions, particularly in connection with neurological diseases. His encouragement and continued support facilitated the launching of our multidisciplinary research program in the long-term effects of manganese toxicity on brain development and aging.  相似文献   

11.
The effects of neonatal 6-hydroxydopamine (6-OH-DA) treatment (systemic administration) on norasrenaline (NA) metabolism, trun over, and receptor charasteristics have been investigated in rat brain in the adult atage. This treatment is known to preferentially affect the locus coeruleus (LC) NA system leading to a marked NA denervation in the cerebral cortex and a hyperinnervation of NA nerve terminals in the pons and medulla oblongata without influencing the LC perikarya. The main NA metabolite, 3-methoxy-4-hydroxyphenylglycol (MOPEG) was reduced by about 70% in the cerebral cortex after 6-OH-DA-treatment at birth while the endogenous NA was almost completely depleted (-92%). The MOPEG levels were not significantly changed in the pons medulla after 6-OH-DA treatment in contrast to the 60% increase of the endogenous NA concentration. The relative reduction of NA in the cerebral cortex of 6-OH-Da treated rats increased in the cerebral cortex is increased after 6-OH-DA, while decreased in the pons-medulla, possibly related to changes in the activation of presynaptic α-adrenoreceptors in both regions. NA-induced formation of cAMP in vitro was found to be markedly increased in the cerebral cortex after 6-OH-DA, whereas no consistent change was observed in the pons medulla. Measurements of α- and β-receptor binding in vitro using radioligand techniques showed an increase of binding sites (20%–50%) for both receptors in the neocortex after 6-OH-DA, whereas no changes were observed in the pons medulla. The 6-OH-Da induced changes in NA turnover, cAMP generating systems, and receptor density may all represent compensatory processes following the altered development of the NA neurons induced by 6-OH-DA.  相似文献   

12.
Ontogenesis of Adenosine Deaminase Activity in Rat Brain   总被引:1,自引:1,他引:0  
The activity of adenosine deaminase (ADA) was determined in whole brain of rats at the embryonic age of 15 days through to adulthood and in nine brain regions in rats 1 day old through to adulthood. In 1-day-old rats, the highest activity was seen in olfactory bulbs (550 +/- 15 nmol/mg protein/30 min) and this was 4.5-fold higher than that in the pons, which was the lowest. In adult animals, olfactory bulb still contained the greatest activity, which was about eightfold higher than hippocampus, which had the lowest. Except for hypothalamus, where ADA activity increased nearly twofold in rats between the ages of 1 and 50 days, significant decreases of as much as fivefold were found in whole brain, superior colliculus, cortex, hippocampus, cerebellum, olfactory bulbs, and olfactory nucleus. In contrast, ADA activity in pons and subcortex remained relatively constant throughout the developmental period. The Km values for ADA in whole brain at 18 days gestation (48 +/- 5 microM) were not significantly different from that observed in adult rats (38 +/- 7 microM), whereas the Vmax values decreased significantly from 339 +/- 9 to 108 +/- 8 nmol/mg protein/30 min. Taken together, the developmental patterns observed in the various brain regions appear not to correspond to any one particular process such as periods of rapid cell proliferation, cell death, synaptogenesis, or myelination. Nor do they correspond to known developmental profiles of transmitters, their receptors, or their metabolic enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract: Acetylcholinesterase activities were determined in the rat cerebral cortex, striatum, midbrain, pons and medulla, hypothalamus, and cerebellum at 5, 12, 20, 30, and 60 days after birth. The ontogeny of the enzyme differed in the various regions, occurring earlier in the more caudal regions, except in the cerebellum where there was no increase. Chronic manganese treatment from conception did not influence the developmental profile of this cholinergic marker.  相似文献   

14.
The effects of neonatal 6-hydroxydopamine (6-OH-DA) treatment (systemic administration) on noradrenaline (NA) metabolism, turn over, and receptor characteristics have been investigated in rat brain in the adult stage. This treatment is known to preferentially affect the locus coeruleus (LC) NA system leading to a marked NA denervation in the central cortex and hyperinnervation of NA nerve terminals in the pons and medulla oblongata without influencing the LC perikarya. The main NA metabolite, 3-methoxy-4-hydroxy-phenylglycol (MOPEG) was reduced by about 70% in the cerebral cortex after 6-OH-DA treatment at birth while the endogenous NA was almost completely depleted (-92%). The MOPEG levels were not significantly changed in the pons medulla after 6-OH-DA treatment in contrast to the 60% increase of the endogenous NA concentration. The relative reduction of NA in the cerebral cortex of 6-OH-DA treated rats increased in the cerebral cortex following administration of the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (H44/68) compared to the control, while the H44/68 induced depletion of NA was reduced in the pons medulla after 6-OH-DA. The steady-state level of endogenous NA and the effect of H44/68 were unchanged in the LC perikarya after 6-OH-DA treatment. These results indicate that the NA turn over in remaining NA nerve terminals in the cerebral cortex is increased after 6-OH-DA, while decreased in the pons-medulla, possible related to changes in the activation of presynaptic alpha-adrenoreceptors in both regions. NA-induced formation of cAMP in vitro was found to be markedly increased in the cerebral cortex after 6-OH-DA, whereas no consistent change was observed in the pons medulla. Measurements of alpha- and beta-receptor binding in vitro using radioligand techniques showed an increase of binding sites (20%--50%) for both receptors in the neocortex aster 6-OH-DA, whereas no changes were observed in the pons medulla. The 6-OH-DA induced changes in NA turnover, cAMP generating systems, and receptor density may all represent compensatory processes following the altered development of the NA neurons induced by 6-OH-DA.  相似文献   

15.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

16.
The distribution of metallothionein-I (MT) in several areas of the brain and its induction by immobilization stress has been studied in the rat. MT content was highest in hippocampus and midbrain and lowest in frontal cortex and pons plus medulla oblongata. Immobilization stress for 18 hours (which was accompanied by food and water deprivation) significantly increased MT levels in the frontal cortex, pons plus medulla oblongata and hypothalamus, but not in midbrain and hippocampus. The effect of stress on MT levels was specific as food and water deprivation along had no significant effect on MT levels in any of the brain areas studied. The effect of stress on MT levels was independent of changes in cytosolic Zn content; this was generally unaffected by stress or food and water deprivation but decreased in pons plus medulla oblongata from stressed rats. The results suggest that MT is induced more significantly in the brain areas that are usually involved in the response of animals to stress.  相似文献   

17.
In anesthetized guinea pigs, we examined heart rate, arterial pressure, and GABA levels in four brain regions after systemic administration of 3-mercaptopropionic acid, an inhibitor of GABA synthesis. After i.p. injection of 195 mg/kg, significant reductions in GABA were first noted at 15 minutes in the cerebellum (–39%), 30 minutes in the hypothalamus (–27%), 60 minutes in the medulla pons (–34%) and 90 minutes in the cerebral cortex (–43%). Cardiovascular function was unaltered at 15 minutes but heart rate and arterial pressure were both significantly elevated at 30 minutes. By 60 minutes, however, heart rate had fallen below control. Injection of a lower dose (97.5 mg/kg i.p.) of 3-MP produced significant increases in heart rate and arterial pressure in 4 of 11 guinea pigs tested. When GABA levels in the same four brain regions were examined at 90 minutes and compared to corresponding levels from vehicle-treated guinea pigs, significant reductions were seen only in the hypothalamus and only in those animals displaying tachycardia and pressor responses. These findings are consistent with our previous results indicating that decreased GABA levels in the hypothalamus and in the medulla pons are responsible for the increases and decreases in heart rate, respectively, seen after systemic administration of 3-mercaptopropionic acid.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

18.
The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly (P<0.05) depressed AChE activity to varying extents depending on the duration of water restriction. Thus AChE activity in the amygdala was depressed by water deprivation for 24 h but partially restored at 48 h. The pons and medulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.  相似文献   

19.
Using dizocilpine (MK-801), we tested the hypothesis that N-methyl-D-aspartate (NMDA) receptors are important controllers of cerebral O2 supply/consumption balance in newborn piglets both during normoxia and hypoxia. Twenty-five 2 to 7-day-old piglets were anesthetized and divided into four groups: (1) Normoxia (n = 6), (2) Normoxia + MK-801 (n = 6), (3) Hypoxia (n = 6), and (4) Hypoxia + MK-801 (n = 7). Regional cerebral blood flow (rCBF) in ml/min/100 g was measured using 14C-iodoantipyrine, and we determined arterial and venous O2 saturations by microspectrophotometry, calculating cerebral O2 consumption (VO2) in ml O2/min/100 g in the cortex, hypothalamus and pons. MK-801 did not significantly affect regional VO2 or rCBF in normoxic piglets. Hypoxia resulted in an increase in local rCBF compared to controls: from 41 ± 6 to 103 ± 18 in the cortex; 34 ± 7 to 101 ± 20 in the hypothalamus; and 45 ± 10 to 95 ± 11 in the pons. Pretreatment with MK-801 abolished this hypoxic flow effect in the cortex (51 ± 2) and hypothalamus (49 ± 5), but not in the pons (91 ± 17). Similar results were observed for VO2 with control values of 1.9 ± 0.3, 1.6 ± 0.2 and 2.1 ± 0.3 for the cortex, hypothalamus and pons respectively. Hypoxia resulted in an increase in the VO2 to 3.9 ± 0.4 (cortex), 3.8 ± 0.6 (hypothalamus) and 3.9 ± 0.8 (pons). Pretreatment with MK-801 prior to hypoxia abolished these effects in the cortex (2.1 ± 0.2) and hypothalamus (2.1 ± 0.2), but not in the pons (2.9 ± 0.2). These findings suggest that NMDA receptors may play a role in the control of cerebral metabolism during hypoxia in this immature porcine model.  相似文献   

20.
W/WV mice are severely deficient in mast cells. The absence of mast cells in skin and salivary glands was found to be paralleled by a drastic decrease of the histamine levels in these tissues when compared to non-anemic +/+ control mice. Brains of W/WV mice are also devoid of mast cells. A comparison of the histamine concentrations in several brain regions of W/WV mice and controls revealed a moderate decrease in cerebral cortex, thalamus, hypothalamus and midbrain but no change in pons, medulla and cerebellum. These findings provide strong evidence that mast cells contribute to the histamine content in forebrain regions but not in hindbrain regions. It is speculated that there may exist histaminergic neurons intrinsic to the medulla and pons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号