首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialidases are hydrolytic enzymes present from virus to highereukaryotes, catalyzing the removal of sialic acid from glycoconjugates.Some protozoa Trypanosomatidae secrete high levels of sialidaseinto the medium. We have now purified the secreted sialidasefrom Trypanosoma rangeli Its N-terminal sequence reveals 100%identity with the corresponding region of the trans-sialidasefrom T.cruzi Trans-sialidase, although homologous to viral andbacterial sialidases, displays a novel sialyltransferase activityand is involved in host cell invasion. Several homologous trans-sialidase-likegenes were cloned from genomic DNA of T.rangeli, and groupedin three subfamilies. Active siali-dase-encoding genes werefound in one of them. The re-combinant sialidase shows similarproperties to those of the native enzyme, including undetectabletrans-sialidase activity. Nevertheless, it has an overall identityof 68.9% with the catalytic domain of T.cruzi trans-sialidase,increasing to 86.7% admitting conservative substitutions. Onlythree other eukaryotic sialidases have been previously cloned,none of them showing significant homology to trans-sialidase.The isolation of a highly similar sialidase is relevant to furtheridentify the molecular determinants allowing trans-sialidaseactivity. As a first approach, chimeric constructs between sialidaseand trans-sialidase were generated, one of them rendering asialidase with three times lower Km than the natural enzyme. eukaryotic sialidase gene family glycosidase parasite sialic acid  相似文献   

2.
This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197–203) at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197–203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13''s acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197–203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production.  相似文献   

3.
Trypanosoma cruzi, the agent of Chagas disease, expresses onits surface a trans-sialidase that catalyzes preferentiallythe transference of -2,3-linked sialic acid to acceptors containingterminal β-galactosyl residues, instead of the typicalhydrolysis reaction, found in most sialidases. The trans-sialidaseis responsible for the acquisition of the host sialic acid bythis protozoan parasite, which does not synthesize sialic acids.Here, we have studied some kinetic properties of a recombinanttrans-sialidase expressed in Escherichia coli We found thatit has sequential-type kinetics for the transferase reaction,as shown for the parasite-derived enzyme. The rates of sialicacid transfer to water (hydrolysis), and to β-galactosylresidues have a unique behavior with respect to the reactiontemperature. While the hydrolysis rate of sialyUactose increasescontinuously up to 35°C, the temperature for the maximalrate of trans-glycosylation depends on the acceptor concentration.At low acceptor concentrations the rate of trans-glycosylationis maximal at 13°C and independent of the amount of sialicacid donors. With increasing acceptor concentrations, maximalrates of trans-glycosylation are shifted to higher temperatures.This finding is explained by an 8-fold increase in the Km forthe acceptor from 13°C to 33°C. Differences in hydrolysisand transfer rates were also obtained by using 4-methyl-umbelliferyl-N-acetyl-neuraminicacid. However, its hydrolysis rate is much higher than the rateof transference to lactose, suggesting that a long-lived enzyme-sialosylintermediate is not formed. In addition, lactose does not increasethe rate of methyl-umbelliferone release at any temperature,indicating that the rate limiting step is the aglycon release.Based on these results we propose that trans-glycosylation inT.cruzi sialidase is favored by the existence of a binding sitefor β-galactosyl residues, which accepts the new glycosidicbond as sialic acid is released from the donor. With increasingtemperature the affinity for the acceptor decreases, resultingin a concomitant increase in the rate of transfer to water,which, in turn, can be suppressed by increasing the acceptorconcentration. Trypanosoma cruzi sialidase kinetics reaction mechanism temperature  相似文献   

4.

Background

Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.

Methodology/Principal Findings

The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins.

Conclusions/Significance

Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.  相似文献   

5.
Sporozoites and merozoites of three species ofEimeria, E. tenella, E. maxima, andE. necatrix, that cause diarrhea in chickens worldwide, were examined for their expression of sialidase (SA) activity. The enzyme was found in three species, and the activity of merozoites was 10–20 times higher than that of sporozoites. The enzyme was resistant to degradation by proteases that are normally present in the intestine, a site inhabited by theEimeria parasites, and it was relatively resistant to heat, with optimum activity being at 40°C, which is within the range of temperature in the chicken intestine (40–43°C).E. tenella SA was immuniprecipitated by monoclonal and polyclonal antibodies raised against theTrypanosoma cruzi SA (TCSA), and enzyme activity was neutralized by these antibodies.E. tenella SA was identified by immunoblots as a doublet of molecular weight 190 000 and 180 000 using, as a probe, anti-TCSA antibodies and antibodies against a synthetic peptide (TR) derived from the long tandem repeat domain of TCSA. Binding of the monoclonal and polyclonal antibodies toE. tenella was completely blocked by TR, but not by an irrelevant peptide (BR). Therefore,E. tenella expresses a developmentally regulated SA that is structurally related to theT. cruzi counterpart. Because of the high SA activity in merozoites, and by analogy with other SA-producing microbes that inhabit mucin-rich epithelia, we suggest that theEimeria SA plays a role in desialylating intestinal mucins to reduce viscosity of the local environment and thereby facilitate parasite migration. The enzyme could also play a role in host cell-parasite interaction.Abbreviations SA sialidase (neuraminidase) - Neu5Ac N-acetylneuraminic acid - 4-MU-Neu5Ac 2-(4-methylumbelliferyl)--N-acetyl-d-neuraminic acid - BSA bovine serum albumin - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride - PNA peanut agglutinin - Ab antibody - TCN-2 monoclonal antibody toT. cruzi sialidase, anti-Ars, monoclonal antibody top-azophenylarsonate - TCSA Trypanosoma cruzi sialidase  相似文献   

6.
Sialyltrisaccharides based on β-galactosyldisaccharides were synthesized using β-galactosidase andtrans-sialidase in one pot. Using β-galactosidase fromBacillus circulans andtrans-sialidase fromTrypanosoma cruzi simultaneously, 6 mM sialyltrisaccharides composed of about 95% NeuAcα(2,3)Galβ(1,4)GlcNAc and 5% NeuAcα(2,3)Galβ(1,6)GlcNAc were produced from a reaction mixture containing 25 mM 0-nitrophenyl-β-D-galactopyranoside, 100 mM N-acety lglucosamine and 10 mM p-nitrophenyl-α-D-N-acetylneuraminic acid. One beauty of this reaction was that a secondary hydrolysis of the disaccharide intermediate occurring between the activated galactopyranoside and N-acetylglucosamine was prevented. Using β-galactosidase fromEscherichia coli and the sametrans-sialidase, 15 mM sialyltrisaccharides composed of about 90% NeuAcα(2,3)Galβ(1,6)GlcNAc and 10% NeuAcα(2,3)Galβ (1,4)GlcNAc were produced from a reaction mixture containing 400 mM galactose, 800 mM N-acetylglucosamine and 20 mMp-nitrophenyl-α-D-N-acetylneuraminic acid. In this study, the reverse-galactosylation reaction between galactose and N-acetylglucosamine was dominant since the disaccharide intermediate mainly resulted in the sialylated product.  相似文献   

7.
In the culture supernatant ofTrypanosoma rangeli, strain El Salvador, a sialidase was present with an activity of 0.1 U/mg protein as determined with the 4-methylumbelliferyl glycoside of -N-acetylneuraminic acid as substrate. This enzyme was purified about 700-fold almost to homogeneity by gel chromatography on Sephadex G-100 and Blue Sepharose, and affinity chromatographies on 2-deoxy-2,3-didehydroneuraminic acid and horse submandibular gland mucin, both immobilized on Sepharose. The pH optimum is at 5.4–5.6, and the molecular weight was determined by gel chromatography, high performance liquid chromatography and sodium dodecyl sulphate gel electrophoresis to be 70 000. The substrate specificity of the enzyme is comparable to bacterial, viral and mammalian sialidases with cleavage rates for the following substrates in decreasing order: N-acetylneuraminyl-(2–3)-lactose> N-glycoloylneuraminy-(2–3)-lactose> N-acetylneuraminyl-(2–6)-lactose >sialoglycoproteins>gangliosides>9-O-acetylated sialoglycoproteins.4-O-Acetylated derivatives are resistant towards the action of this sialidase. The enzyme activity can be inhibited by 2-deoxy-2,3-didehydro-N-acetylneuraminic acid, Hg2+ ions, andp-nitrophenyloxamic acid; it is not dependent on the presence of Ca2+ Mn2+ or Mg2+ ions.Abbreviations BSA bovine serum albumin - BSM bovine submandibular gland mucin - CMP cytidine monophosphate - EDIA ethylenediaminetetraacetic acid - ESM equine submandibular gland mucin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HPLC high performance liquid chromatography - Lac lactose - MU-Neu5Ac 4-methylumbelliferyl glycoside of -N-acetylneuraminic acid - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - Neu4Ac5Gc N-glycoloyl-4-O-acetylneuraminic acid - Neu2en 2-deoxy-2,3-didehydroneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - PMSF phenylmethylsulfonyl fluoride - PSM pig submandibular gland mucin - SDS sodium dodecyl sulfate - Tris tris-(hydroxymethyl)aminomethane Dedicated to Professor Dr. Heinz Mühlpfordt on the occasion of his 65th birthday.  相似文献   

8.
Trypanosoma cruzi expresses a unique trans-sialidase that isresponsible for the transfer of sialic acid from host glycoproteinsand glycolipids to mucin-like glycoprotein acceptors on theparasite surface. The enzyme and the sialic acid acceptors arepresent in the mammalian forms of the parasite and in the parasiteforms that grow in axenic cultures, which correspond to thedevelopmental stages found in the insect vectors. Here we showthat parasite forms growing in the vector Triatoma infestansexpress trans-sialidase in the hind gut portions of the insectHowever, the sialic acid acceptors are poorly sialylated dueto the low concentration of sialic acid donors in the gut lumenof T.infestans, which feeds exclusively on blood that is richin sialic acid donors. These low levels of sialic acid donorsare due to a novel sialidase activity present mainly in theanterior midgut with high specificity for  相似文献   

9.
A spectrophotometric method that can monitor the trans-sialidase catalyzed reaction was devised by using a chromogenic substrate, o-nitrophenyl--d-galactopyranoside (ONPG), as a sialic acid acceptor. This method yielded results that were consistent with those from HPLC, and could be very conveniently used in the screening of sialic acid donor or inhibitor of trans-sialidase.  相似文献   

10.
11.
Trypanosoma cruzi expresses a trans-sialidase on its surface, which catalyzes the transfer of sialic acid from mammalian host glycans to its own surface glycoproteins. It has been proposed that the enzyme consists of three domains prior to a long C-terminal repeating sequence that is not required for enzyme activity. The first of these domains shares significant sequence identity with bacterial sialidases which catalyse the hydrolysis of sialic acid. Here we report the sequence of the N-terminal domains of the TS19y trans-sialidase gene, which was expressed in bacteria with the same specific activity as natural enzyme of T. cruzi. Various deletion mutants of TS19y, without the C-terminal tandem repeat, have been cloned and expressed and their trans-sialidase and sialidase activities measured. These experiments show that all three N-terminal domains are required for full trans-sialidase activity, though only the first is necessary for sialidase activity. Some transferase activity is observed, however, even with the shortest construct comprising the first N-terminal domain. Deletion mutants to probe the role of the N-terminal residues of the first domain suggest that the first 33 residues are also required for trans-sialidase activity, but not for sialidase activity. Molecular modelling of the first N-terminal domain of TS19y based on our structures of bacterial sialidases and site-directed mutations suggests the location of a galactose-binding site within this domain.  相似文献   

12.
Trypanosoma cruzi, the agent causing Chagas' disease, expresses an enzyme that transfers sialic acids among glycoproteins and glycolipids both from the host cell surface and its own surface. This enzyme, called trans-sialidase, is different from higher eukaryotic sialyltransferases in that it does not accept cytidine 5′-monophospho-N-acetylneuraminic acid as a donor substrate. Also, the common glycosyltransferase structure is not present. To study this enzyme, an active member was cloned and expressed in higher eukaryotic cells. Expression of recombinant enzyme was achieved in the methylotrophic yeast Pichia pastoris. The N-terminal fusion of a secretion signal and the C-terminal addition of an epitope tag resulted not only in high expression levels, but also enabled easy detection and purification. Using P. pastoris, we obtained about 5 mg of enzymatically active trans-sialidase per liter of induced culture medium.  相似文献   

13.
A dense glycocalix covers the surface of Trypanosoma cruzi, the agent of Chagas disease. Sialic acid in the surface of the parasite plays an important role in the infectious process, however, T. cruzi is unable to synthesize sialic acid or the usual donor CMP-sialic acid. Instead, T. cruzi expresses a unique enzyme, the trans-sialidase (TcTS) involved in the transfer of sialic acid from host glycoconjugates to mucins of the parasite. The mucins are the major glycoproteins in the insect stage epimastigotes and in the infective trypomastigotes. Both, the mucins and the TcTS are anchored to the plasma membrane by a glycosylphosphatidylinositol anchor. Thus, TcTS may be shed into the bloodstream of the mammal host by the action of a parasite phosphatidylinositol-phospholipase C, affecting the immune system. The composition and structure of the sugars in the parasite mucins is characteristic of each differentiation stage, also, interstrain variations were described for epimastigote mucins. This review focus on the characteristics of the interplay between the trans-sialidase and the mucins of T. cruzi and summarizes the known carbohydrate structures of the mucins.  相似文献   

14.
Conserved sequences in bacterial and viral sialidases   总被引:26,自引:0,他引:26  
The genes of the bacterial sialidases fromClostridium sordellii G12,C. perfringens A99,Salmonella typhimurium LT-2 andVibrio cholerae 395 sequenced so far were examined for homologies and were compared with sequences of viral sialidases.Each of the bacterial sialidases contains a short sequence of twelve amino-acids, which is repeated at four positions in the protein. All these sequences exhibit significant similarities. Comparing the repeated sequences of the four sialidases, five amino-acids were found to be highly conserved at defined positions: Ser-X-Asp-X-Gly-X-Thr-Trp. Additionally, most of the distances betweeen the four repeated regions are also conserved among the different sialidases. The conserved bacterial sequences show similarity with sialidases of influenza A H7N1 and H13N9.  相似文献   

15.
The trans -sialidase from Trypanosoma cruzi is a member of the sialidase superfamily that functions as a sialidase in the absence of a carbohydrate acceptor. We have used(1)H nuclear magnetic resonance (NMR) spectroscopy to investigate the stereospecificity of the hydrolysis of two substrates, namely, 4-methyl-umbelliferyl- N -acetylneur-aminic acid and alpha(2-3)-sialyllactose, catalyzed by a recombinant T.cruzi trans -sialidase. We demonstrate that, in aqueous solution, the thermodynamically less stable alpha-form of N -acetylneuraminic acid is the initial product of the hydrolysis; subsequent mutarotation leads eventually to an equilibrium mixture of the alpha and beta forms, in molar ratio 8:92. In a mixed water/methanol solution, the hydrolysis reaction produces also the alpha-methyl sialoside but not its beta-methyl counterpart. We also show that 4-methyl-umbelliferyl- N -acetylneuraminic acid is a significantly better substrate for the sialidase than alpha(2-3)-sialyllactose. Prolonged incubation of alpha(2-3)-sialyllactose with an excess of trans -sialidase produced a trace of 2-deoxy-2,3-didehydro- N -acetylneuraminic acid, as identified by NMR spectroscopy and by gas liquid chromatography/mass spectro-metry. In conclusion, this study shows that the stereo-selectivity of the sialidase activity of T.cruzi trans -sialidase is identical to that of bacterial, viral, and mammalian sialidases, suggesting a similar active-site architecture.  相似文献   

16.
A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed β-propeller structure with the model’s highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl α-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl α-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred α2-3-linked sialic acids over the α2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.  相似文献   

17.
Trypanosoma cruzi, the agent of Chagas disease, expresses a modified sialidase, the trans-sialidase, which transfers sialic acid from host glycoconjugates to beta-galactose present in parasite mucins. Another American trypanosome, Trypanosoma rangeli, expresses a homologous protein that has sialidase activity but is devoid of transglycosidase activity. Based on the recently determined structures of T.rangeli sialidase (TrSA) and T.cruzi trans-sialidase (TcTS), we have now constructed mutants of TrSA with the aim of studying the relevant residues in transfer activity. Five mutations, Met96-Val, Ala98-Pro, Ser120-Tyr, Gly249-Tyr and Gln284-Pro, were enough to obtain a sialidase mutant (TrSA(5mut)) with trans-sialidase activity; and a sixth mutation increased the activity to about 10% that of wild-type TcTS. The crystal structure of TrSA(5mut) revealed the formation of a trans-sialidase-like binding site for the acceptor galactose, primarily defined by the phenol group of Tyr120 and the indole ring of Trp313, which adopts a new conformation, similar to that in TcTS, induced by the Gln284-Pro mutation. The transition state analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA), which inhibits sialidases but is a poor inhibitor of trans-sialidase, was used to probe the active site conformation of mutant enzymes. The results show that the presence of a sugar acceptor binding-site, the fine-tuning of protein-substrate interactions and the flexibility of crucial active site residues are all important to achieve transglycosidase activity from the TrSA sialidase scaffold.  相似文献   

18.
Nineteen Trypanosoma cruzi stocks, most of them of wild origin, and four Trypanosoma rangeli stocks from Colombia were analysed by molecular karyotype analysis with cloned DNA cruzipain as the probe. Another 27 cloned stocks of T. cruzi from different geographic areas of South America were used as reference for T. cruzi lineages. Phenetic analysis of chromosome size polymorphism demonstrated a great variability of Colombian T. cruzi stocks, suggesting that most belong to lineage I, although two of them belong to lineage II. The 2 lineage II T. cruzi, 17 T. cruzi lineage I, and 3 T. rangeli stocks from Colombia were studied further by Southern blot analysis with a panel of kinetoplast DNA minicircle probes. Hybridisation results indicate that the two T. cruzi II stocks are genetically distant from each other and from T. cruzi lineages IIb, IId, and IIe from Chile. Finally, T. cruzi minicircle probes do not cross-hybridise in any stringency condition tested with T. rangeli minicircles, a clear indication that these parasites can be easily distinguished by this method.  相似文献   

19.
We demonstrate that 9-amino-NeuAc transferred to asialo-1-acid glycoprotein resists cleavage by bacterial, viral and mammalian sialidases. This is the first synthetic sialic acid analogue, which can be activated and transferred to glycoprotein, but is not a sialidase (EC 3.2.1.18) substrate.Abbreviations HPLC high performance liquid chromatography - BSA bovine serum albumin - NeuAc N-acetyl-d-neuraminic acid, 5-acetamido-3,5-dideoxy-d-glycero-d-galacto-non-2-ulosonic acid - 9-Amino-NeuAc 9-amino-5-N-acetyl-d-neuraminic acid, 5-acetamido-9-trideoxy-d-glycero-d-galacto-non-2-ulosonic acid - CMP-NeuAc cytidine-5-monophospho-N-acetyl-d-neuraminic acid - CMP-9-amino-NeuAc cytidine-5-monophospho-9-amino-5-N-acetyl-d-neuraminic acid - 9-azido-NeuAc 5-acetamido-9-azido-3,5,9-trideoxy-d-glycero-d-galacto-non-2-ulosonic acid. Enzymes EC 3.2.1.18 sialidase, acylneuraminylhydrolase - EC 2.4.99.1 Galß1-4GlcNAc a(2-6)-sialytransferase  相似文献   

20.
Three site-specific mutations were performed in two regions of a sialidase gene fromClostridium perfringens which are known to be conserved in bacterial sialidases. The mutant enzymes were expressed inEscherichia coli and, when measured with MU-Neu5Ac as substrate, exhibited variations in enzymatic properties compared with the wild-type enzyme. The conservative substitution of Arg 37 by Lys, located in a short conserved region upstream from the four repeated sequences common in bacterial sialidase genes, was of special interest, asK M andV max, as well asK i measured with Neu5Ac2en, were dramatically changed. These data suggest that this residue may be involved in substrate binding. In addition to its low activity, this mutant enzyme has a lower temperature optimum and is active over a more limited pH range. This mutation also prevents the binding of an antibody able to inhibit the wild-type sialidase. The other mutations, located in one of the consensus sequences, were of lower influence on enzyme activity and recognition by antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号