首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
生长光强对六个橡胶树品种幼苗光合特性的影响   总被引:1,自引:0,他引:1  
研究了6个橡胶树品种幼苗(适应1年后)在不同生长光强(100%、50%、25%和5%自然光)下的叶片光合系统对光强和CO2浓度的响应特性。结果表明,6个橡胶树品种对不同的光环境均表现出较强的适应性。在不同生长光强下,橡胶树幼苗叶片的最大光合速率(Pmax)、光补偿点(LCP)、暗呼吸速率(Rd)、磷酸丙糖利用速率(TPU)、最大羧化速率(Vcmax)和最大电子传递速率(Jmax)以及叶绿素含量(Chl)均有显著差异(P<0.05),而光饱和点(LSP)和AQY(表观量子效率)则无显著差异。相同生长光强下,6个橡胶树品种间叶片的最大光合速率(Pmax)、暗呼吸速率(Rd)、磷酸丙糖利用速率(TPU)、最大电子传递速率(Jmax)和叶绿素含量(Chl)有显著差异(P<0.05),其光补偿点(LCP)、最大羧化速率(Vcmax)和表观量子效率(AQY)则无显著差异。综合比较各参数,RRIM600、云研77-4和PR107适宜于相对光强为100%~50%的植胶环境,而云研77-2、GT1和热研523适宜于相对光强为50%~25%的植胶环境。  相似文献   

2.
Early season development of cotton is often impaired by sudden episodes of chilling temperature. We determined the chilling response specific to postemergent 13-day-old cotton (Gossypium hirsutum L. cv. Coker 100A-glandless) seedlings. Seedlings were gradually chilled during the dark period and rewarmed during the night-to-day transition. For some chilled plants, the soil temperature was maintained at control level. Plant growth, water relations and net photosynthesis (P(n)) were analyzed after one or three chilling cycles and after 3 days of recovery. Three chilling cycles led to lower relative growth rate (RGR) compared with controls during the recovery period, especially for plants with chilled shoots and roots. Treatment differences in RGR were associated with net assimilation rate rather than specific leaf area. Both chilling treatments led to loss of leaf turgor during the night-to-day transition; this effect was greater for plants with chilled compared with warm roots. Chilling-induced water stress was associated with accumulation of the osmolyte glycine betaine to the same extent for both chilling treatments. Inhibition of P(n) during chilling was related to both stomatal and non-stomatal effects. P(n) fully recovered after seedlings were returned to control conditions for 3 days. We conclude that leaf expansion during the night-to-day transition was a significant factor determining the magnitude of the chilling response of postemergent cotton seedlings.  相似文献   

3.
采用水培方式研究了LaCl3对140 mmol·L-1 NO3-硝酸盐胁迫下黄瓜幼苗光合特性的影响.结果表明: 硝酸盐胁迫显著降低了黄瓜幼苗叶绿素及类胡萝卜素含量,叶片Mg2+ ATPase、Ca2+ ATPase活性也随之降低;硝酸盐胁迫7 d,黄瓜幼苗叶片光合速率的降低以气孔限制为主,叶片AQY与CE下降,胁迫12 d则以非气孔限制为主.硝酸盐胁迫下,外加LaCl3可以使黄瓜叶片保持较高的Mg2+ ATPase、Ca2+ ATPase活性及叶绿素和类胡萝卜素含量,尤其是外加低浓度(20 μmol·L-1)LaCl3显著增加了叶片类胡萝卜素含量;LaCl3还具有降低气孔关闭、改善叶片气体交换功能,减缓叶片Fv/Fm、ФPSII、AQY、CE及qP的降低幅度等作用,使叶片在盐胁迫下保持较高的光能利用率及CO2同化能力.20 μmol·L-1 LaCl3可以有效缓解硝酸盐对黄瓜幼苗光合作用的影响,而200 μmol·L-1LaCl3在胁迫初期对黄瓜幼苗有缓解效果,后期则效果不明显.该结果可为设施土壤的改良提供新的途径.  相似文献   

4.
在水培条件下,研究24-表油菜素内酯(EBR)对低氧胁迫下黄瓜幼苗叶片叶绿体和线粒体超微结构及光合的影响.结果表明:与正常通气条件相比,低氧胁迫下表观量子效率(AQY)和羧化效率(CE)显著降低,而光补偿点(LCP)、暗呼吸速率(Rd)和CO2补偿点(CCP)显著升高;低氧胁迫并添加油菜素内酯处理下,CE与低氧胁迫处理相比显著提高29.4%,而LCP和Rd分别显著下降15.0%和14.4%.光响应Pn-PPFD曲线和CO2响应Pn-Ci曲线表明,低氧胁迫下净光合速率(Pn)增幅降低,而添加油菜素内酯有利于Pn增幅的提高.低氧胁迫下叶绿体和线粒体结构受到伤害,而油菜素内酯可以缓解低氧胁迫对黄瓜幼苗叶绿体和线粒体超微结构的不良影响,使叶片维持较好的光合性能.  相似文献   

5.
Yao SM  Ru ZG  Liu MJ  Yang WP  Feng SW  Li G 《应用生态学报》2011,22(2):383-388
以百农矮抗58小麦为材料,采用大田试验的方法,研究了始穗期喷施不同浓度(0,10、30、50 mg·L-1)的5-氨基乙酰丙酸(ALA)对冬小麦花后干物质生产和旗叶衰老的影响.结果表明:10~50 mg·L-1 ALA处理有利于植株对干物质的积累,至成熟期其干物质总量明显高于对照(0 mg·L-1);10~50 mg·L-1 ALA处理各器官干物质的分配率与对照没有显著性差异,但其花后生产的干物质对产量的贡献率显著高于对照;在开花期,10~50 mg·L-1ALA处理的叶面积指数与对照没有显著性差异,但在乳熟期和腊熟期,叶面积指数显著高于对照.从开花期至蜡熟期,10~50 mg·L-1 ALA处理的旗叶SPAD值和净光合速率均高于对照;在灌浆后期,ALA处理降低了旗叶丙二醛(MDA)含量和相对电导率.与对照相比,10~50mg·L-1 ALA处理冬小麦的穗粒数、千粒重和产量显著增加,其中以30 mg·L-1 ALA处理增产效果最大.  相似文献   

6.
杨莹  王传华  刘艳红 《生态学报》2010,30(22):6082-6090
通过设置4个光照梯度(25%、12%、6%和3%自然光)模拟鄂东南低山丘陵地区落叶阔叶林林下的光环境,研究了2种耐荫性不同的树种幼苗--麻栎(Quercus acutissima)和化香(Platycarya strobilacea)不同光强下的存活率、光合特性、生长和生物量分配,探讨了低光环境中耐荫性不同的树种幼苗维持自身碳平衡的机制和权衡"存活-生长"选择的生活史策略。结果表明:(1)低光下的2个树种幼苗的生长、光合特性和生物量分配具有显著性差异。(2)各个光照梯度下麻栎幼苗都生长良好,存活率保持在35%以上,而化香幼苗遭遇高的死亡率,80d后3%和6%自然光下的幼苗全部死亡;低光环境中麻栎幼苗比化香幼苗具有更大的表观光量子(AQY)和最大净光合效率(Pmax),更低的光补偿点(LCP)和暗呼吸效率(Rd),即耐荫性较强的麻栎幼苗比耐荫性较弱的化香幼苗具有更高的低光碳同化率和碳捕获能力。(3)2个树种幼苗的成活率与RGR呈负相关关系,各个光照梯度下耐荫性较弱的化香幼苗的相对生长率(RGR)显著高于耐荫性较强的麻栎幼苗,而两个树种幼苗的净同化率(NAR)无明显差异。相对于麻栎幼苗较高的根生物量比(RMR),化香幼苗将更多的生物量分配给叶部,因而具有较高的叶生物量比(LMR)、叶面积比(LAR)和比叶面积(SLA)。不同耐荫性的幼苗生长及生物量分配方式的差异是植物"存活-生长"权衡后的结果,耐荫性弱的化香幼苗具有较高的生长潜力和较弱的自我保护能力,而耐荫性强的麻栎幼苗具有更高的低光碳储量,能够维持更好的低光碳平衡,具有竞争优势。  相似文献   

7.
以1年生风箱果幼苗为材料,采用人工遮荫方式设置CK (全光)、轻度遮荫L1(60%全光)和重度遮荫L2(20%全光)3种光环境,测定不同光环境下风箱果幼苗的光合特性、光合色素含量、非结构性碳水化合物(NSC)积累等,分析风箱果幼苗对不同遮荫环境的适应性。结果表明:风箱果属于阳生树种,对光环境的变化非常敏感;遮荫显著降低了表观量子效率(AQY)、最大净光合速率(Pmax)、暗呼吸速率(Rd)、光补偿点(LCP)、光饱和点(LSP)和类胡萝卜素含量(Car)(P<0.05),显著提高了叶绿素a (Chla)、叶绿素b (Chlb)、总叶绿素(Chl)含量和叶绿素/类胡萝卜素(P<0.05);遮荫显著减少了根、茎、叶中NSC含量(P<0.05),尤其是L2时,分别比CK减少了52.5%、44.9%和43.9%。综上所述,风箱果幼苗对于遮荫环境的适应和调节能力较差,生产实践中应栽植在阳光充足的环境中。  相似文献   

8.
一直以来黄波罗(Phellodendron amurense)被认为是不耐阴树种, 然而引入美国纽约后, 发现它具有一定的耐阴性, 在全光和林下均能更新, 在纽约已经成为生物入侵种。为了探讨黄波罗的耐阴性问题, 通过设置自然光与遮阴(15%自然光)两种光环境, 观测了三年生黄波罗幼苗(遮阴1 a后)光合生理参数、光能利用效率、叶绿素和比叶重的变化。结果表明, 与自然光处理相比, 遮阴处理的黄波罗幼苗最大光合速率、表观量子效率和暗呼吸速率略有下降, 但差异不显著(p>0.05), 光补偿点下降显著(p<0.05); 同时, 单位面积叶绿素含量无显著差异(p>0.05), 而单位干重叶绿素含量显著升高, 比叶重显著下降, 叶面积显著增大(p<0.05)。上述结果说明: 遮阴的黄波罗幼苗通过降低光补偿点和暗呼吸速率利用环境中的弱光, 同时通过减小比叶重、增大叶面积和提高叶绿素b相对含量来增强对光的捕获, 使其在弱光时的光能利用效率提高。由此推断, 黄波罗幼苗能适应一定程度的遮阴。  相似文献   

9.
5-aminolevulinic acid (ALA) is a key precursor for the biosynthesis of porphyrins such as heme and chlorophyll. ALA alleviates salinity stress damage in germinating seeds and improves seedling growth. Exogenous application of ALA at low concentrations has been shown to enhance salt tolerance in a number of plants. In the present study, we studied the effect of exogenous application of ALA on enhancing salt stress tolerance in Isatis indigotica Fort. (Anhui population as S1, Shanxi population as S2). A foliar application of 0, 12.5, 16.7, 25.0, and 50.0 mg/L ALA was given to the leaves of I. indigotica plants treated with 100 mmol/L NaCl. The fresh weight of leaves and roots; chlorophyll relative content (SPAD value); photosynthetic parameters, such as net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci) and water use efficiency of the treated plants were determined. The third leaf of each treated plant was used to determine the activities of antioxidant enzymes. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutamate synthase (GOGAT), nitrate reductase (NR) activities and the malondialdehyde (MDA) content increased in response to 100 mmol/L NaCl in both S1 and S2 plants. However, the fresh weight of leaf and root, chlorophyll relative content, Pn, Gs, Ci decreased in response to salt stress in both S1 and S2 plants. In all foliar application of ALA in S1 plants, the MDA content, and the activities of SOD and POD were the highest in response to 50.0 mg/L foliar application of ALA. GOGAT and NR activities were the highest in response to 16.7 mg/L foliar ALA. Chlorophyll content and Pn were the highest in S1 plants treated with by 25.0 mg/L ALA. In S2 plants, plant fresh weight, chlorophyll relative content, SOD, CAT, NR activities and Pn treated with 16.7 mg/L ALA were higher than that of the control (CK0). POD, MDA, GOGAT activities in S2 plants treated with 25.0 mg/L ALA were the highest among all treatments. Thus, our results showed that the optimal concentration of ALA (16.7 ~ 25.0 mmol/L) increases the activity of antioxidant enzymes, which in turn helps to abate the damage caused by salt stress in I. indigotica seedlings. Furthermore, ALA also results in an increase in chlorophyll content, Pn and the activities of GOGAT and NR.  相似文献   

10.
珍稀树种红花玉兰对其华南原产地的自然环境有良好的适应性, 但在华北地区却生长不良。通过对红花玉兰在华北地区一个生长季内对三种光照水平(100%、70%、40%全光照)的光合和生长响应分析, 结果表明:在70%全光照条件下, 红花玉兰幼苗的净光合速率、光饱和点、株高、基径、根生物量和茎生物量均达到最高水平。随着光照强度的减弱, 暗呼吸速率、光补偿点、比叶重量、叶片厚度和密度显著降低, 表观量子效率、最大荧光Fm、可变荧光Fv、Fm/Fo(Fo为初始荧光)、Fv/Fo、Fv/Fm、叶绿素含量、叶面积和叶柄角度均显著增大。说明70%全光照最适于一年生红花玉兰幼苗在华北地区的生长, 全光照和40%全光照条件下幼苗则因光量的过剩和不足而生长不良。因此建议将红花玉兰栽植在林缘或林窗地带, 可为这一珍稀濒危树种在华北地区的引种提供有利的适生光照环境。  相似文献   

11.
低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应   总被引:12,自引:0,他引:12  
以桑树品种“秋雨”为试验材料,研究了桑树幼苗在低温锻炼、冷胁迫和常温恢复期间的光合作用和抗氧化酶活性的变化.结果表明: 12 ℃3 d低温锻炼明显提高了桑树幼苗的抗冷性.3 ℃3 d冷胁迫下,12 ℃3 d低温锻炼后的桑树幼苗叶片净光合速率(Pn)、气孔导度(Gs)和PSⅡ 最大光化学效率(Fv/Fm)明显高于对照(未经低温锻炼)处理的桑树幼苗,而且其在常温下的恢复也较对照桑树幼苗迅速.在12 ℃ 3 d低温锻炼和3 ℃ 3 d冷胁迫期间,桑树幼苗叶片脯氨酸和可溶性糖含量明显增加,而经低温锻炼的桑树幼苗叶片丙二醛(MDA)含量明显低于未经低温锻炼的桑树幼苗,经低温锻炼的桑树幼苗叶片抗坏血酸过氧化物酶(APX)活性则明显高于未经低温锻炼的桑树幼苗.说明渗透调节物质含量增加和APX活性提高在低温锻炼诱导桑树幼苗的抗冷性上发挥着重要的作用.  相似文献   

12.
Low-temperature damage is a common problem for tropical and subtropical plants during their early-growth stage. In this study, an experiment with a L18 (21?×?37) mixed orthogonal array in a greenhouse was conducted to determine whether arbuscular mycorrhizal fungi (AMF) inoculation and paclobutrazol (PBZ) application through foliar spray would enhance the chilling tolerance of teak seedlings. One-month-old seedlings of clones 8301, 7544, and 7552 from a Myanmar provenance propagated by tissue culture techniques were inoculated with Glomus versiforme and cultivated for 6?months. The foliar surface of both mycorrhizal and nonmycorrhizal treated plants was sprayed with PBZ at concentrations of 0, 50, and 100?mg?l?1 once a week for 3?weeks prior to exposure to low temperatures of 6, 3, and 0°C for 12?h in an artificial climate chamber, followed by 12?h of recovery at 20°C room temperature. AMF colonization significantly promoted height and RCD growth and dry biomass accumulation of shoot and root. Under low-temperature stress, AM symbiosis increased leaf chlorophyll content by 22.8%, soluble protein content by 19.6%, superoxide dismutase (SOD) activity by 10.6%, and peroxidase (POX) activity by 9.5%, whereas malondialdehyde content was decreased by 14.1%. Both AMF colonization and the foliar spray PBZ at 50 and 100?mg?l?1 were capable of alleviating the damage caused by low-temperature stress on teak seedlings by increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme (SOD and POX) activity, and by decreasing membrane lipid peroxidation. AMF colonization and foliar spraying of PBZ at 50?mg?l?1 produced a positive interaction and appears to be a good way to enhance chilling tolerance of teak seedlings experiencing stress at 6, 3 and 0°C for 12?h.  相似文献   

13.
5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.  相似文献   

14.
通过设置3个光照强度(100%、56.2% 和12.5%),模拟森林幼苗生长的旷地(采伐迹地)、林窗和林下光环境,研究不同光照强度对外来种台湾桤木和乡土种四川桤木幼苗的生长、光合特性以及生物量积累与分配的影响.结果表明: 低光环境限制了两种桤木幼苗形态指标的增长,适当遮荫的林窗环境比旷地更有利于幼苗的生长.台湾桤木幼苗具有较高的比叶面积和相对生长速率,较大的单叶面积、叶长、叶宽、株高和基径,较少的叶片数和较低的叶面积比、叶柄长.低光环境下,台湾桤木幼苗的最大净光合速率、光饱和点和表观光量子效率较高,光补偿点和暗呼吸速率较低.随着光照强度的降低,台湾桤木幼苗具有更高的根生物量比和更低的叶生物量比;四川桤木幼苗则相反,加剧了动物取食和机械损伤的风险.  相似文献   

15.
盐胁迫对柳枝稷苗期生长和生理特性的影响   总被引:8,自引:0,他引:8  
2010年,在人工气候室中设置了0、50、100、150和200 mmol·L-15种NaCl浓度处理,分析盐胁迫对柳枝稷苗期生长的影响.结果表明:随着NaCl浓度的增加,柳枝稷的生长明显受到抑制,株高降低、叶片变小、光合叶面积减少、净光合速率下降,干物质积累量显著降低,表现出甜土植物的特点.柳枝稷的耐盐能力较强,在200 mmol·L-1NaCl溶液中处理30 d后仍能存活,单株绿叶面积为491.9 cm2,净光合速率为0.93 μmol CO2·m-2·s-1.本试验条件下,以生长量下降50%为标准求得柳枝稷的耐盐阈值为178.6 mmol·L-1.  相似文献   

16.
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.  相似文献   

17.
Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg−1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment.  相似文献   

18.
以适宜不同栽培条件的3个甜瓜品种为材料,研究了遮荫对其光合色素含量、净光合速率及比叶重等叶片特性的影响。结果表明:与正常光照相比,遮光处理能诱使甜瓜叶片叶绿素和类胡萝卜素含量显著提高,叶绿素a/b显著降低。全光照条件下,3个甜瓜品种的净光合速率日变化曲线均呈双峰型,有明显的"光合午休"现象,而在遮荫条件下则呈单峰曲线变化,且光合峰值出现的时间比全光照下推迟;遮光条件下甜瓜叶片气孔导度日变化曲线与其净光合速率日变化类似。3个品种间比叶重在全光照条件下差异不显著,但遮荫显著降低了壮龄叶片的比叶重,且遮荫强度越重,比叶重越小;品种‘黄河蜜3号’壮龄叶的比叶重降幅(31.83%)显著大于‘银帝’(27.22%)和‘玉金香’(26.01%)。可见,遮荫降低了甜瓜叶片的净光合速率和功能叶片的比叶重,植株通过增加自身叶片光合色素含量以增强对环境的适应性,缓解遮荫对其的影响,品种‘银帝’表现出较强的耐弱光性。  相似文献   

19.
The influence of 5-aminolevulinic acid (ALA) on the growth, photosynthesis, and fruit quality of gibberellin-induced seedless 2-year-old “Delaware“ grapevine was examined. The result of soil treatment (0.1–10 mg l−1) and foliar spray treatment (30–300 mg l−1) with ALA after flowering was significant growth improvement, up to 55% in the lateral shoot, and up to 38% in leaf area. Optimal doses were 1 mg l−1 soil treatment and 100 mg l−1 foliar treatment. The photosynthetic rate of plants treated with ALA increased by a significant 9.2%–22.5%. Relative to the control, based on measurements of the 5th leaf of each shoot in the ripening period, the optimum concentrations for growth and photosynthesis enhancement in grapevines were 100 mg l−1 (foliar treatment) and 1 mg l−1 (soil treatment). Total plant weight at harvest increased a significant 13% at the optimal treatment doses. In terms of fruit quality, the cluster fresh weight increased a significant 44.9%–53% and fruit colour showed a tendency to become darker in all plants treated with ALA. The °Brix value in the plant treated with 100 mg l−1 ALA was a significant 2.7% higher than that of the control. We consider that leaf area and photosynthetic rates during cultivation are important for the acquisition of photoassimilates and that these are likely to be causally associated with improvement of total dry weight and advance of fruit quality. In addition, a possibility of advancing the harvest time of grapes by ALA treatment was shown.  相似文献   

20.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号