首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We identified eight independent Tam3 copies residing in the same Antirrhinum majus genome. All the copies showed excision at 15 °C, but not at 25 °C. Under conditions promoting excision, each copy appeared to transpose in the leaves and flower lobes with a nearly constant frequency, whereas individual transposition abilities varied widely: the most active copy had an excision frequency more than 100-fold greater than that of the least active one. Despite the different transposition abilities, the structures of the eight Tam3 copies were almost identical. These results made it clear that the transpositional ability of Tam3 is regulated by chromosomal position, but they do not imply position-dependent transposase activity. The position effect of the Tam3 transposition was found to be correlated to the methylation state of the copy's end regions: DNA methylation in the Tam3 end regions tended to suppress the excision activity, and the degree of methylation was dependent on the chromosomal position. Our results also provide evidence of de novo methylation provoked by transposition of the endogenous element. We propose a mechanism of transpositional regulation of plant transposons that responds to the degree of methylation as determined by chromosomal position.  相似文献   

3.
The Antirrhinum majus transposon Tam3 undergoes low temperature-dependent transposition (LTDT). Growth at 15 degrees C permits transposition, whereas growth at 25 degrees C strongly suppresses it. The degree of Tam3 DNA methylation is altered somatically and positively correlated with growth temperature, an exceptional epigenetic system in plants. Using a Tam3-inactive line, we show that methylation change depends on Tam3 activity. Random binding site selection analysis and electrophoretic mobility shift assays revealed that the Tam3 transposase (TPase) binds to the major repeat in the subterminal regions of Tam3, the site showing the biggest temperature-dependent change in methylation state. Methylcytosines in the motif impair the binding ability of the TPase. Proteins in a nuclear extract from plants grown at 15 degrees C but not 25 degrees C bind to this motif in Tam3. The decrease in Tam3 DNA methylation at low temperature also requires cell division. Thus, TPase binding to Tam3 occurs only during growth at low temperature and immediately after DNA replication, resulting in a Tam3-specific decrease in methylation of transposon DNA. Consequently, the Tam3 methylation level in LTDT is regulated by Tam3 activity, which is dependent on the ability of its TPase to bind DNA and affected by growth temperature. Thus, the methylation/demethylation of Tam3 is the consequence, not the cause, of LTDT.  相似文献   

4.
Tam3 from Antirrhinum majus belongs to the Ac/Ds family of transposable elements. An allele of the DAG locus of Antirrhinum ( dag ::Tam3), which is required for chloroplast development and leaf palisade differentiation, has been generated by Tam3 insertion into the untranslated leader sequence of the gene. This allele gives rise to a cold-sensitive phenotype, where mutant tissue containing wild-type revertant somatic sectors is observed in the leaves of plants grown at 15°C, while leaves of plants grown at 25°C appear near wild-type. The temperature sensitivity of dag ::Tam3 results from expression of the DAG locus responding to the activity of the transposable element, the transposition of which is very sensitive to growing temperature. Genetic suppression of Tam3 transposition, using the STABILISER locus, also results in suppression of the dag mutant phenotype. dag ::Tam3 represents a Tam3-suppressible allele similar to those described for Mu transposons in maize. Suppression of the dag mutant phenotype in response to element inactivation appears to result from use of an alternative promoter at the 3' end of the Tam3 element. The production of suppressible alleles by an Ac-like element is discussed in relation to the mutagenic potential of plant transposons in producing complex genetic diversity.  相似文献   

5.
The transposon Tam3 from Antirrhinum majus can transpose in a heterologous host (Nicotiana tabacum); thus the element is autonomous, probably encoding the specific information required for its own transposition. In transgenic tobacco Tam3 rapidly becomes methylated at its ends whilst adjacent flanking sequences remain hypomethylated. This methylation may account for our failure to detect Tam3 transposition in the progeny of transgenic tobacco. Treatment with the inhibitor of cytosine methylation, 5 aza-cytosine appeared to induce transposon related activity at a low level. In Antirrhinum methylation also appears to be associated with inactivation of Tam3 copies.  相似文献   

6.
The Tol2 element of the medaka fish Oryzias latipes is a member of the hAT (hobo/Activator/Tam3) transposable element family. There is evidence for rapid expansion in the genome and throughout the species in the past but a high spontaneous transposition rate is not observed with current fish materials, suggesting that the Tol2 element and its host species have already acquired an interactive mechanism to control the transposition frequency. DNA methylation is a possible contributing factor, given its involvement with many other transposable elements. We therefore soaked embryos in 5-azacytidine, a reagent that causes reduction in the DNA methylation level, and examined amounts of PCR products reflecting the somatic excision frequency, obtaining direct evidence that exposure promotes Tol2 excision. Our results thus suggest that methylation of the genome DNA is a factor included in the putative mechanisms of control of transposition of the Tol2 element.  相似文献   

7.
In Antirrhinum majus only autonomous Tam3 transposons have been characterized. We investigated whether an artificial dTam3 element, with a deletion in the presumptive transposase coding region, can be trans-activated in tobacco by an activator Tam3 element, which was immobilized by the deletion of one inverted repeat. A phenotypic assay based on restored hygromycin resistance demonstrates that a dTam3 element harbouring a bacterial plasmid can be trans-activated with a low frequency. Molecular analysis confirms that the dTam3 element has been excised from the HPTII marker gene. Reintegration of the dTam3 element into the tobacco genome is detected only in one out of six hygromycin-resistant plants analysed. PCR analysis of empty donor sites shows that excision of the dTam3 element in tobacco results in rearrangements (deletions and additions), that have been shown to be characteristic of Tam3 excision in the original host Antirrhinum majus. This trans-activation assay allowed us to establish that, in contrast to what has been detected in Antirrhinum majus, a periodical temperature shift down to 15°C does not enhance dTam3 transposition in regenerating tobacco calli.  相似文献   

8.
It has been proposed that environmental stimuli can activate transposable elements (TEs), whereas few substantial mechanisms have been shown so far. The class-II element Tam3 from Antirrhinum majus exhibits a unique property of low-temperature-dependent transposition (LTDT). LTDT has proved invaluable in developing the gene isolation technologies that have underpinned much of modern plant developmental biology. Here, we reveal that LTDT involves differential subcellular localization of the Tam3 transposase (TPase) in cells grown at low (15°C) and high (25°C) temperatures. The mechanism is associated with the nuclear import of Tam3 TPase in Antirrhinum cells. At high temperature, the nuclear import of Tam3 TPase is severely restricted in Antirrhinum cells, whereas at low temperature, the nuclear localization of Tam3 TPase is observed in about 20% of the cells. However, in tobacco BY-2 and Allium cepa (onion) cells, Tam3 TPase is transported into most nuclei. In addition to three nuclear localization signals (NLSs), the Tam3 TPase is equipped with a nuclear localization inhibitory domain (NLID), which functions to abolish nuclear import of the TPase at high temperature in Antirrhinum. NLID in Tam3 TPase is considered to interact with Antirrhinum-specific factor(s). The host-specific regulation of the nuclear localization of transposase represents a new repertoire controlling class-II TEs.  相似文献   

9.
The extremely homogeneous organization of the transposon family Tam3 in Antirrhinum majus is in sharp contrast to the heterogeneity of the copies constituting many other transposon families. To address the issue of the Tam3 structural uniformity, we examined two possibilities: (1) recent invasion of Tam3 and (2) failure of gap repair, which is involved in conversion from autonomous forms to defective forms. The phylogenetic analysis of 17 Tam3 copies suggested that the invasion of Tam3 into the Antirrhinum genome occurred at least 5 mya, which is sufficiently long ago to have produced many aberrant copies by gap repair. Thus, we investigated gap repair events at the nivea(recurrens:Tam3) (niv(rec)::Tam3) allele, where Tam3 is actively excised. We show here that the gap repair of de novo somatic Tam3 excision was arrested immediately after initiation of the process. All of the identified gap repair products were short stretches, no longer than 150 bp from the ends. The Tam3 ends have hairpin structures with low free energies. We observed that the gap repair halted within the hairpin structure regions. Such small gap repair products appear to be distributed in the Antirrhinum genome, but are unlikely to be active. Our data strongly suggest that the structural homogeneity of Tam3 was caused by immunity to gap repair at the hairpins in both of the end regions. The frequency of extensive gap repair of de novo excision products in eukaryotic transposons was found to be correlated with the free energies of the secondary structures in the end regions. This fact suggests that the fates of transposon families might depend on the structures of their ends.  相似文献   

10.
A large part of the rice genome is composed of transposons. Since active excision/reintegration of these mobile elements may result in harmful genetic changes, many transposons are maintained in a genetically or epigenetically inactivated state. However, some non-autonomous DNA transposons of the nDart1-3 subgroup, including nDart1-0, actively transpose in specific rice lines, such as pyl-v which carries an active autonomous element, aDart1-27, on chromosome 6. Although nDart1-3 subgroup elements show considerable sequence identity, they display different excision frequencies. The most active element, nDart1-0, had a low cytosine methylation status. The aDart1-27 sequence showed conservation between pyl-stb (pyl-v derivative line) and Nipponbare, which both lack autonomous activity for transposition of nDart1-3 subgroup elements. In pyl-v plants, the promoter region of the aDart1-27 transposase gene was more hypomethylated than in other rice lines. Treatment with the methylation inhibitor 5-azacytidine (5-azaC) induced transposition of nDart1-3 subgroup elements in both pyl-stb and Nipponbare plants; the new insertion sites were frequently located in genic regions. 5-AzaC treatment principally induced expression of Dart1-34 transposase rather than the other 38 aDart1-related elements in both pyl-stb and Nipponbare treatment groups. Our observations show that transposition of nDart1-3 subgroup elements in the nDart1/aDart1 tagging system is correlated with the level of DNA methylation. Our system does not cause somaclonal variation due to an absence of transformed plants, offers the possibility of large-scale screening in the field and can identify dominant mutants. We therefore propose that this tagging system provides a valuable addition to the tools available for rice functional genomics.  相似文献   

11.
New pigmentation mutants were generated by transposon mutagenesis in Antirrhinum majus, in three previously described loci, nivea, delila and incolorata, and two new loci, daphne and olive. The wild-type olive gene is required for the production of dark-green leaves, and the daphne gene for the synthesis of flavones. Five out of the six mutants were both germinally and somatically unstable, indicating that they resulted from transposon insertions. Molecular analysis of the mutant at nivea (niv-600) showed that it was caused by insertion of a new transposon, Tam4. The sequence of Tam4 suggests that it is unable to transpose autonomously and that it is related to Tam1 and Tam2. All three of these transposons have identical inverted repeats, produce 3 bp target duplications, leave similar excision footprints and share at one end a 600-700 bp region containing many palindromic copies of a motif sequence, possibly required in cis for transposition. The somatic excision of Tam4 in niv-600 is at a very low rate compared to germinal excision but it can be activated by crossing to lines carrying derivative alleles of a Tam1 insertion at niv. Molecular analysis of four different pigmentation mutants has shown that insertions of Tam1, Tam2, Tam3 and Tam4 have been obtained, illustrating the potential of general transposon mutagenesis for trapping and isolating new transposons as well as for tagging genes.  相似文献   

12.
We have investigated the organization of the transposon Tam3 family in Antirrhinum majus. Genomic hybridization experiments and characterization of 40 independent Tam3 clones isolated from an A. majus plant revealed that the Tam3 family is quite conserved and the copy sizes are uniform. We did not find any copy with a deleted internal sequence, unlike what is usually observed in other transposons. This exceptionally conserved structure of the Tam3 family was confirmed by PCR and sequencing analyses. Sequencing analysis identified eight copies with sequences completely identical to that of the Tam3 transposase gene. These results suggested that a considerable number of autonomous Tam3 copies are present in the genome of A. majus. Among 24 copies which are surrounded by single copy regions of the genome, 14 copies are present as specific insertions in the line which we used, but absent in other lines. These copies are therefore predicted to be movable. If this ratio is the same for all Tam3 copies in a genome, then a maximum of 60% of the copies are estimated to be movable in the genome. The relatively high frequency of gene tagged by Tam3 might reflect the large number of movable copies in the genome.  相似文献   

13.
Summary In Antirrhinum majus the transposable element Tam3 has been described at two unlinked loci pallida and nivea, both of which are required for the production of anthocyanin pigment in flowers. In each case the element is inserted in the promoter region and gives a variegated phenotype. We show that the rate of Tam3 excision at both loci is greatly affected by temperature, being approximately 1000-fold higher at 15°C compared with 25°C. Tam3 is also controlled by an unlinked gene Stabiliser, which considerably reduces excision rate. We show that the high degree of sensitivity to temperature and Stabiliser is an intrinsic property of Tam3 which is not shared by an unrelated element, Tam1. The Tam3 insertion at nivea gives rise to a series of alleles which confer reduced pigmentation, novel spatial patterns and changed instability. These are probably a result of imprecise excision and rearrangements of the Tam3 element.  相似文献   

14.
We describe two novel ways in which changes in gene expression in Antirrhinum majus may arise as a consequence of the Tam3 transposition mechanism. One involves excision of Tam3 from the nivea gene promoter and insertion of two new Tam3 copies 3.4 kb and 2.1 kb away, on either side of the excision site. One of the new insertions is in the nivea coding region and completely blocks production of an active gene product. This allele probably arose by a symmetrical double transposition, following chromosome replication. The second case involves a small deletion at one end of Tam3 in the pallida gene, flanked by a sequence typical of a Tam3 excision footprint. This suggests that the end of Tam3 was cleaved at an early step in an attempted transposition and re-ligated back to its original flanking sequence. The alteration restores some expression to the pallida gene, suggesting that the ends of the intact Tam3 element contain components which can actively inhibit gene expression. The implications of these findings for the mechanism of Tam3 transposition and for the effects of Tam3 on host gene expression are discussed.  相似文献   

15.
In order to perform mutational studies on genes from the self-incompatibility (S) locus, an S locus-directed transposon tagging system was established in Antirrhinum. Cultivated lines of Antirrhinum majus contain many molecularly well-characterized transposons, but are self compatible due to the presence of a nonfunctional S locus (Sc). In this study, an active transposon (Tam5) from the Cycloidea (Cyc) locus controlling flower asymmetry in A. majus was introduced to a position tightly linked to the functional S locus from self incompatible interspecific hybrids (A. majus×hispanicum) through genetic recombination. RFLP (restriction fragment length polymorphism) analysis showed that the transposon is 3 cM (centiMorgan) away from the S locus and retains high transpositional activity with a germinal excision frequency of 20%. Possible implications of the linkage between the S locus and genes controlling floral phenotypes were discussed. An active transposon tightly linked to the S locus constructed here will facilitate the generation of insertional mutants of the S locus encoded genes and may lead to dissecting their precise roles during self-incompatible reactions.  相似文献   

16.
 In this study we have focused on two copies of the transposon Tam3 isolated from an Antirrhinum majus plant which has flower variegation due to the excision of Tam3 from the nivea locus. These two copies possess a high homology, over 95%, to an active Tam3 element found in the nivea recurrence:Tam3 allele. Although somatic excision of the Tam3 copy from the nivea locus can be detected at 15°C by Southern blotting, neither of the two copies showed any sign of the excision. Both of the immobilized copies were also found in five varieties from different A. majus sources, all of which contain common fragments. The results suggest that the two copies have been fixed in the genomes of many A. majus varieties. Structural differences between these immobilized copies and the known active copy were mainly observed in the subterminal regions, including the terminal inverted repeats. The immobility of the two Tam3 copies might be due to mutations within the end regions of essential cis-elements in Tam3 transposition, as reported for Ac and En/Spm. Received: 30 June 1997 / Accepted: 5 August 1997  相似文献   

17.
I A Borovok 《Genetika》1990,26(9):1690-1693
It was shown that the 1st class composite transposon Tn5 (5.8 Kb) and its synthetic derivatives--TnV (Tn5-ReppSC101; 6.1 Kb) and Tn5-MobRP4 (about 7.7 Kb) transpose in Escherichia coli K-12 cells (RecA strain HB101) with similar efficiency both at 28 and at 42 degrees C as well as at 37 degrees C. This property of Tn5-like elements distinguishes them from the class II transposons (such as Tn3, Tn21 etc.), whose transposition, as is well known, is strongly suppressed even at 37 degrees C. It was also demonstrated that transposition frequency of Tn5-derived elements depends on their copy number.  相似文献   

18.
Transposable elements are well known for their ability to generate large- and small-scale rearrangements of the sequences flanking their insertion sites. These include deletions, inversions, and duplications. Tam3, a transposon from the Snapdragon (Antirrhinum majus), is highly active in the generation of such rearrangements. We have analysed a number of Tam3-induced rearrangements at the nivea (niv) locus by Southern blotting, cloning, and sequence determination. The data obtained from these analyses have led to an understanding of the mechanisms by which these complex alleles were formed. We have shown that the primary rearrangements usually occur without excision of the element and therefore result from aberrant transposition attempts. Subsequent rearrangements may occur on excision of the element. Finally, we suggest how the analysis of such rearrangements may not only provide information about Tam3 transposition but also show how transposon-induced rearrangements may influence the structure and function of the genome as a whole.  相似文献   

19.
Most transposon families consist of heterogeneous copies with varying sizes. In contrast, the Tam3 copies in Antirrhinum majus are known to have exceptionally conserved structures of uniform size. Gap repair has been reported to be involved in the structural alteration of copies from several transposon families. In this study, we have asked whether or not gap repair has affected Tam3 copies. Five Tam3 copies carrying aberrant sequences were selected from 40 independent Tam3 clones and their sequences were analyzed. Two of the five copies contain insertions in the Tam3 sequence. These two insertions, designated Tam356 and Tam661, are typical transposon-like sequences, which have terminal inverted repeats and cause target site duplication. These nested transposons were obviously associated with transpositional events, and did not originate from the gap-repair process. The remaining three copies had lost large parts of the Tam3 sequence. We could not find any relationship between the deletions of Tam3 sequence in the three copies and gap repair. PCR analysis of a Tam3 excision site in the nivea recurrence:Tam3 mutant also showed that most of the repair events after the Tam3 excision involved end-joining. In addition to the results obtained here, among the other clones isolated, we could not find any of the internally deleted copies that comprise a major part of other transposon families. All of these data suggest that some feature of the Tam3 structure suppresses the structural alterations that are otherwise generated during the gap repair process.  相似文献   

20.
C. Lister  C. Martin 《Genetics》1989,123(2):417-425
The transposable element Tam3 of Antirrhinum majus is capable of causing large-scale chromosomal restructuring. It induced a large deletion at the nivea locus, to produce the allele niv-:529. The deletion removed the entire nivea coding region while the element remains intact with the potential to induce further rearrangements. Genetic experiments showed that the endpoint of the deletion (called x) is closely linked to nivea. The DNA sequences of niv-:529, a genomic excision of Tam3 from niv-:529, and the original genomic position of x have been determined. These data suggest that the deletion could have resulted from an abortive transposition or through breakage and religation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号