首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin β1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-β1) inhibits cell spreading. To study the mechanism whereby Tac-β1 inhibits cell spreading, we examined the effect of Tac-β1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-β1 and found that Tac-β1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-β1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-β1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-β1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.  相似文献   

2.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   

3.
Focal adhesion kinase (FAK) is a key signaling molecule regulating cellular responses to integrin-mediated adhesion. Integrin engagement promotes FAK phosphorylation at multiple sites to achieve full FAK activation. Phosphorylation of FAK Tyr-397 creates a binding site for Src-family kinases, and phosphorylation of FAK Tyr-576/Tyr-577 in the kinase domain activation loop enhances catalytic activity. Using novel phosphospecific antibody reagents, we show that FAK activation loop phosphorylation is significantly elevated in cells expressing activated Src and is an early event following cell adhesion to fibronectin. In both cases, this regulation is largely dependent on Tyr-397. We also show that the FAK activation loop tyrosines are required for maximal Tyr-397 phosphorylation. Finally, immunostaining analyses revealed that tyrosine-phosphorylated forms of FAK are present in both newly forming and mature focal adhesions. Our findings support a model for reciprocal activation of FAK and Src-family kinases and suggest that FAK/Src signaling may occur during both focal adhesion assembly and turnover.  相似文献   

4.
The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.  相似文献   

5.
Humoral factors and extracellular matrix are critical co-regulators of smooth muscle cell (SMC) migration and proliferation. We reported previously that focal adhesion kinase (FAK)-related non-kinase (FRNK) is expressed selectively in SMC and can inhibit platelet-derived growth factor BB homodimer (PDGF-BB)-induced proliferation and migration of SMC by attenuating FAK activity. The goal of the current studies was to identify the mechanism by which FAK/FRNK regulates SMC growth and migration in response to diverse mitogenic signals. Transient overexpression of FRNK in SMC attenuated autophosphorylation of FAK at Tyr-397, reduced Src family-dependent tyrosine phosphorylation of FAK at Tyr-576, Tyr-577, and Tyr-881, and reduced phosphorylation of the FAK/Src substrates Cas and paxillin. However, FRNK expression did not alter the magnitude or dynamics of ERK activation induced by PDGF-BB or angiotensin II. Instead, FRNK expression markedly attenuated PDGF-BB-, angiotensin II-, and integrin-stimulated Rac1 activity and attenuates downstream signaling to JNK. Importantly, constitutively active Rac1 rescued the proliferation defects in FRNK expressing cells. Based on these observations, we hypothesize that FAK activation is required to integrate integrin signals with those from receptor tyrosine kinases and G protein-coupled receptors through downstream activation of Rac1 and that in SMC, FRNK may control proliferation and migration by buffering FAK-dependent Rac1 activation.  相似文献   

6.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

7.
In endothelial cells, X-chromosome linked inhibitor of apoptosis protein (XIAP) regulates cell survival, migration and adhesion. We have recently found that XIAP recruits focal adhesion kinase (FAK) into integrin-associated focal adhesions, controlling cell migration. However, little is understood about the molecular mechanisms by which FAK modulation is controlled by XIAP. In this study, we show that XIAP modulates FAK activity through the control of FAK phosphorylation. In bovine aortic endothelial cells (BAEC), phosphorylation of Tyr-576 in FAK is elevated by laminar shear stress. This elevated phosphorylation appears to be responsible for shear stress-stimulated ERK activation. We found that XIAP knockdown reduces shear stress-enhanced phosphorylation of Tyr-576 and induces shear stress-triggered translocation of FAK into nucleus. Nuclear translocation of FAK reduces contact between FAK and Src, a kinase which phosphorylates Tyr-576. This spatial segregation of FAK from Src decreases Tyr-576 phosphorylation and thus shear-stimulated ERK activation. Taken together, our results demonstrate that XIAP plays a key role in shear stress-stimulated ERK activation by maintaining the Src-accessible location of FAK.  相似文献   

8.
The adamalysins (ADAMs) are transmembrane glycoproteins involved in cell adhesion and proteolytic ectodomain processing of cytokines and adhesion molecules. Many ADAM cytoplasmic domains are proline-rich and have potential phosphorylation sites. We show here that the cytoplasmic domain of ADAM15, metargidin, can interact specifically with Src family protein-tyrosine kinases (PTKs) and the adaptor protein Grb2 in hematopoietic cells (Jurkat, THP-1, U937, and K562 cell lines). Src homology 3 domains from several Src family PTKs including Lck, Fyn, Abl, and Src associate with ADAM15 in vitro. Dephosphorylation of cell extracts resulted in decreased association of ADAM15 with Src family PTK SH3 domains, indicating that phosphorylation influences ADAM15 interactions with its binding partners. This was confirmed in vitro for Hck, Lck, and Grb2, which showed enhanced association with tyrosine-phosphorylated glutathione S-transferase-ADAM15 cytoplasmic domain compared with unphosphorylated protein. In contrast, binding of MAD2 to ADAM15 was slightly reduced by phosphorylation of the ADAM. Immunoprecipitation of ADAM15 from Jurkat cells confirmed the association with Lck in vivo, and upon PMA stimulation, the phosphorylation level of ADAM15 was increased. Cotransfection of ADAM15 and Hck showed Hck-dependent phosphorylation of ADAM15 in vivo. Hck, and to a lesser extent Lck, phosphorylated the ADAM15 cytoplasmic domain in vitro in immune complex kinase assays. Binding of ADAM15 cytoplasmic domain to Hck and Lck was also shown by Far Western analysis. In contrast to Hck, Lck activity was not required for binding to ADAM15, as shown by treatment of cells with PP1. Deletion and point mutation analysis of the ADAM15 cytoplasmic domain confirmed the importance of the proline-rich motifs for Grb2 and Lck binding and indicated the regulatory nature of Tyr(715) and Tyr(735). These data demonstrate selective, phosphorylation-dependent interactions of ADAM15 with Src family PTKs and Grb2, which highlight the potential for integration of ADAM functions and cellular signaling.  相似文献   

9.
Focal adhesion kinase (FAK) is thought to play a major role in transducing extracellular matrix (ECM)-derived survival signals into cells. The function of FAK is linked to its autophosphorylation at Tyr-397 and then recruitment of several effector molecules. Thus, modulation of FAK activity may affect several intracellular signaling pathways and may participate in a variety of pathological settings. In the present study, we investigated the effect of short-term 5 min forebrain ischemia on levels and Tyr-397 phosphorylation of focal adhesion kinase and the interaction of this enzyme with Src protein tyrosine kinase and adapter protein p130Cas, involved in FAK-mediated signaling pathway in gerbil hippocampus. The total amount of focal adhesion kinase as well as its Tyr-397 phosphorylation declined substantially between 24 and 48 h after the insult, particularly in CA1 region of hippocampus. Concomitantly, a decreased amount of FAK/Src kinase complex has been observed. These data indicate that inhibition of FAK/Src-coupled signaling pathway may participate in the ischemia-induced neuronal degeneration in gerbil hippocampus. The temporal profile of FAK down-regulation in CA1 area coincides with metalloproteinases (MMPs) activation. These results suggest that extracellular proteolysis might belong to the mechanisms which govern the FAK-coupled pathway in ischemic hippocampus.  相似文献   

10.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

11.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in integrin-mediated control of cell behavior. Following cell adhesion to components of the extracellular matrix, FAK becomes phosphorylated at multiple sites, including tyrosines 397, 576, and 577. Tyr-397 is an autophosphorylation site that promotes interaction with c-Src or Fyn. Tyr-576 and Tyr-577 lie in the putative activation loop of the kinase domain, and FAK catalytic activity may be elevated through phosphorylation of these residues by associated Src family kinase. Recent studies have implicated FAK as a positive regulator of cell spreading and migration. To further study the mechanism of adhesion-induced FAK activation and the possible role and signaling requirements for FAK in cell spreading and migration, we utilized the tetracycline repression system to achieve inducible expression of either wild-type FAK or phosphorylation site mutants in fibroblasts derived from FAK-null mouse embryos. Using these Tet-FAK cells, we demonstrated that both the FAK autophosphorylation and activation loop sites are critical for maximum adhesion-induced FAK activation and FAK-enhanced cell spreading and migration responses. Negative effects on cell spreading and migration, as well as decreased phosphorylation of the substrate p130(Cas), were observed upon induced expression of the FAK autophosphorylation site mutant. These negative effects appear to result from an inhibition of integrin-mediated signaling by the FAK-related kinase Pyk2/CAKbeta/RAFTK/CadTK.  相似文献   

12.
The mechanisms involved in the mechanical loading-induced increase in bone formation remain unclear. In this study, we showed that cyclic strain (CS) (10 min, 1% stretch at 0.25 Hz) stimulated the proliferation of overnight serum-starved ROS 17/2.8 osteoblast-like cells plated on type I collagen-coated silicone membranes. This increase was blocked by MEK inhibitor PD-98059. Signaling events were then assessed 0 min, 30 min, and 4 h after one CS period with Western blotting and coimmunoprecipitation. CS rapidly and time-dependently promoted phosphorylation of both ERK2 at Tyr-187 and focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, leading to the activation of the Ras/Raf/MEK pathway. Cell transfection with FAK mutated at Tyr-397 completely blocked ERK2 Tyr-187 phosphorylation. Quantitative immunofluorescence analysis of phosphotyrosine residues showed an increase in focal adhesion plaque number and size in strained cells. CS also induced both Src-Tyr-418 phosphorylation and Src to FAK association. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 did not prevent CS-induced FAK-Tyr-397 phosphorylation suggesting a Src-independent activation of FAK. CS also activated proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase highly homologous to FAK, at the 402 phosphorylation site and promoted its association to FAK in a time-dependent manner. Mutation of PYK2 at the Tyr-402 site prevented the ERK2 phosphorylation only at 4 h. Intra and extracellular calcium chelators prevented PYK2 activation only at 4 h. In summary, our data showed that osteoblast response to mitogenic CS was mediated by MEK pathway activation. The latter was induced by ERK2 phosphorylation under the control of FAK and PYK2 phosphorylation orchestrated in a time-dependent manner.  相似文献   

13.
The calcium-dependent proline-rich tyrosine kinase Pyk2 is activated by tyrosine phosphorylation, associates with focal adhesion proteins, and has been linked to proliferative and migratory responses in a variety of mesenchymal and epithelial cell types. Full Pyk2 activation requires phosphorylation at functionally distinct sites, including autophosphorylation site Tyr-402 and catalytic domain site Tyr-580, though the mechanisms involved are unclear. The pathways mediating Pyk2 phosphorylation at Tyr-402 and Tyr-580 were therefore investigated. Both sites were rapidly and transiently phosphorylated following cell stimulation by Ang II or LPA. However, only Tyr-580 phosphorylation was rapidly enhanced by intracellular Ca(2+) release, or inhibited by Ca(2+) depletion. Conversely, Tyr-402 phosphorylation was highly sensitive to inhibition of actin stress fibers, or of Rho kinase (ROK), an upstream regulator of stress fiber assembly. Ang II also induced a delayed (30-60 min) secondary phosphorylation peak occurring at Tyr-402 alone. Unlike the homologous focal adhesion kinase (FAK), Pyk2 phosphorylation was sensitive neither to the Src inhibitor PP2, nor to truncation of its N-terminal region, which contains a putative autoinhibitory FERM domain. These results better define the mechanisms involved in Pyk2 activation, demonstrating that autophosphorylation is ROK- and stress fiber-dependent, while transphosphorylation within the kinase domain is Ca(2+)-dependent and Src-independent in intestinal epithelial cells. This contrasts with the tight sequential coupling of phosphorylation seen in FAK activation, and further underlines the differences between these closely related kinases.  相似文献   

14.
Ezrin, a membrane-cytoskeleton linker, is required for cell morphogenesis, motility, and survival through molecular mechanisms that remain to be elucidated. Using the N-terminal domain of ezrin as a bait, we found that p125 focal adhesion kinase (FAK) interacts with ezrin. We show that the two proteins coimmunoprecipitate from cultured cell lysates. However, FAK does not interact with full-length ezrin in vitro, indicating that the FAK binding site on ezrin is cryptic. Mapping experiments showed that the entire N-terminal domain of FAK (amino acids 1-376) is required for optimal ezrin binding. While investigating the role of the ezrin-FAK interaction, we observed that, in suspended kidney-derived epithelial LLC-PK1 cells, overproduction of ezrin promoted phosphorylation of FAK Tyr-397, the major autophosphorylation site, creating a docking site for FAK signaling partners. Treatment of the cells with a Src family kinase inhibitor reduced the phosphorylation of Tyr-577 but not that of Tyr-397, indicating that ezrin-mediated FAK activation does not require the activity of Src kinases. Altogether, these observations indicate that ezrin is able to trigger FAK activation in signaling events that are not elicited by cell-matrix adhesion.  相似文献   

15.
The results presented here demonstrate that focal adhesion kinase (FAK) Tyr-861 is the predominant tyrosine phosphorylation site stimulated by hyperosmotic stress in a variety of cell types, including epithelial cell lines (ileum-derived IEC-18, colon-derived Caco2, and stomach-derived NCI-N87), FAK null fibroblasts re-expressing FAK, and Src family kinase triple null fibroblasts (SYF cells) in which c-Src has been restored (YF cells). We show that hyperosmotic stress-stimulated FAK phosphorylation in epithelial cells is inhibited by Src family kinase inhibitors PP2 and SU6656 and that it does not occur in SYF cells. Unexpectedly, hyperosmotic stress-induced phosphorylation of FAK at Tyr-397, Tyr-576, and most dramatically at Tyr-861 was completely insensitive to the F-actin-disrupting agents, latrunculin A and cytochalasin D. Finally, we show that in FAK null cells exposed to hyperosmotic stress or growth factor withdrawal, re-expression of wild type FAK restored cell survival, whereas re-expression of FAK mutated from tyrosine to phenylalanine at position 861 (FAKY861F) did not. Our results indicate that FAK Tyr-861 phosphorylation is required for mammalian cell survival of hyperosmotic stress. Furthermore, the results suggest that FAK is an upstream regulator (rather than downstream effector) of F-actin reorganization in response to hyperosmotic stress. We propose that FAK/c-Src bipartite enzyme is a sensor of cytoplasmic shrinkage, and that the phosphorylation on FAK Tyr-861 by Src and subsequent reorganization of F-actin can initiate an anti-apoptotic signaling pathway that protects cells from hyperosmotic stress.  相似文献   

16.
Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a beta(1)-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. alpha-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that alpha-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced alpha-actinin-1 and alpha-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of alpha-actinin-1, but not alpha-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated alpha-actinin-1 tyrosine phosphorylation and alpha-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for alpha-actinin-1 phosphorylation in the pressure response was investigated by expressing the alpha-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of alpha-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of alpha-actinin-1 eliminated the pressure-induced association of alpha-actinin-1 and Src with beta(1)-integrin receptor, as well as FAK-Src complex formation. These results suggest that alpha-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to beta(1)-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.  相似文献   

17.
We have previously described regulation of focal adhesion kinase (FAK) by its amino-terminal FERM-like domain through an autoinhibitory interaction with its kinase domain (Cooper, L. A., Shen, T. L., and Guan, J. L. (2003) Mol. Cell. Biol. 23, 8030-8041). Here we show that the first two subdomains of the FERM-like domain are independently capable of inhibiting phosphorylation of FAK in trans. We characterized several point mutations within the first subdomain of the FERM-like domain and find that mutation of Lys-38 to alanine results in a FAK mutant that is strongly hyperphosphorylated when expressed in mammalian cells, and promotes increased phosphorylation of the FAK substrate paxillin. A second mutation of Lys-78 to alanine results in a FAK mutant that is underphosphorylated, but can be activated by extracellular matrix stimuli. Like deletion of the amino terminus itself the K38A mutation is phosphorylated in suspension. The Delta375 truncation mutant of FAK is strongly phosphorylated both when Tyr-397 is mutated to phenylalanine, and in the presence of the Src inhibitor, PP2, suggesting that removal of the amino terminus can render FAK Src independent. This is in contrast to the K38A mutant that is not phosphorylated in the Y397F background, and which shows decreased phosphorylation in the presence of the Src inhibitor PP2, suggesting that regulation of FAK by Src is a secondary step in its activation. The K38A mutation weakens the interaction between the amino terminus of FAK and its own kinase domain, and disrupts the ability of the amino terminus to inhibit the phosphorylation of FAK in trans. The K38A mutation of FAK also increases the ability of FAK to promote cell cycle progression and cell migration, suggesting that hyperphosphorylation of this mutant can positively affect FAK function in cells. Together, these data strongly suggest a role for the first FAK subdomain of the FERM domain in its normal regulation and function in the cell.  相似文献   

18.
Plating suspended Swiss 3T3 cells onto fibronectin-coated dishes promoted phosphorylation of endogenous focal adhesion kinase (FAK) at Tyr-397, the major autophosphorylation site, and at Tyr-577, located in the activation loop, as revealed by site-specific antibodies that recognize the phosphorylated form of these residues. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 (PP-2) markedly reduced the phosphorylation of both Tyr-397 and Tyr-577 induced by fibronectin. Furthermore, fibronectin-mediated FAK phosphorylation at Tyr-397 was dramatically reduced in SYF cells (deficient in Src, Yes, and Fyn expression). Stimulation of Swiss 3T3 cells with bombesin also induced a rapid increase in the phosphorylation of endogenous FAK at Tyr-397. In contrast to the results obtained with fibronectin, PP-2 did not prevent FAK Tyr-397 phosphorylation stimulated by bombesin at a concentration (10 micrometer) that suppressed bombesin-induced FAK Tyr-577 phosphorylation. Similarly, PP-2 did not prevent Tyr-397 phosphorylation in Swiss 3T3 cells stimulated with other G protein-coupled receptor agonists including vasopressin, bradykinin, endothelin, and lysophosphatidic acid. Lysophosphatidic acid also induced FAK phosphorylation at Tyr-397 in SYF cells. Our results identify, for first time, the existence of Src-dependent and Src-independent pathways leading to FAK autophosphorylation at Tyr-397 stimulated by adhesion-dependent signals and G protein-coupled receptor agonists in the same cell.  相似文献   

19.
Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.  相似文献   

20.
Hyperosmotic stress induced by treatment of Swiss 3T3 cells with the non-permeant solutes sucrose or sorbitol, rapidly and robustly stimulated endogenous focal adhesion kinase (FAK) phosphorylation at Tyr-397, the major autophosphorylation site, and at Tyr-577, within the kinase activation loop. Hyperosmotic stress-stimulated FAK phosphorylation at Tyr-397 occurred via a Src-independent pathway, whereas Tyr-577 phosphorylation was completely blocked by exposure to the Src family kinase inhibitor PP-2. Inhibition of p38 MAP kinase or phosphatidylinositol 3-kinases did not prevent FAK phosphorylation stimulated by hyperosmotic stress. Overexpression of N17 RhoA did not reduce hyperosmotic stress-mediated localization of phosphorylated FAK to focal contacts and treatment with the Rho-associated kinase inhibitor Y-27632 did not prevent FAK translocation and tyrosine phosphorylation in response to hyperosmotic stress. Overexpression of N17 Rac only slightly altered the hyperosmotic stress-mediated localization of phosphorylated FAK to focal contacts. In contrast, overexpression of the N17 mutant of Cdc42 disrupted hyperosmotic stress-stimulated FAK Tyr-397 localization to focal contacts. Additionally, treatment of cells with Clostridium difficile toxin B potently inhibited hyperosmotic stress-induced FAK tyrosine phosphorylation. Furthermore, FAK null fibroblasts compared with their FAK containing controls show markedly increased sensitivity, manifest by subsequent apoptosis, to sustained hyperosmotic stress. Our results indicate that FAK plays a fundamental role in protecting cells from hyperosmotic stress, and that the pathway(s) that mediates FAK autophosphorylation at Tyr-397 in response to osmotic stress can be distinguished from the pathways utilized by many other stimuli, including neuropeptides and bioactive lipids (Rho- and Rho-associated kinase-dependent), tyrosine kinase receptor agonists (phosphatidylinositol 3-kinase-dependent), and integrins (Src-dependent).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号