首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1986,103(6):2593-2606
Although numerous hair proteins have been studied biochemically and many have been sequenced, relatively little is known about their in situ distribution and differential expression in the hair follicle. To study this problem, we have prepared several mouse monoclonal antibodies that recognize different classes of human hair proteins. Our AE14 antibody recognizes a group of 10-25K hair proteins which most likely corresponds to the high sulfur proteins, our AE12 and AE13 antibodies define a doublet of 44K/46K proteins which are relatively acidic and correspond to the type I low sulfur keratins, and our previously described AE3 antibody recognizes a triplet of 56K/59K/60K proteins which are relatively basic and correspond to the type II low sulfur keratins. Using these and other immunological probes, we demonstrate the following. The acidic 44K/46K and basic 56-60K hair keratins appear coordinately in upper corticle and cuticle cells. The 10-25K, AE14-reactive antigens are expressed only later in more matured corticle cells that are in the upper elongation zone, but these antigens are absent from cuticle cells. The 10-nm filaments of the inner root sheath cells fail to react with any of our monoclonal antibodies and are therefore immunologically distinguishable from the cortex and cuticle filaments. Nail plate contains 10-20% soft keratins in addition to large amounts of hair keratins; these soft keratins have been identified as the 50K/58K and 48K/56K keratin pairs. Taken together, these results suggest that the precursor cells of hair cortex and nail plate share a major pathway of epithelial differentiation, and that the acidic 44K/46K and basic 56-60K hard keratins represent a co- expressed keratin pair which can serve as a marker for hair/nail-type epithelial differentiation.  相似文献   

2.
Epithelial cell keratins make up the type I (K9-K20) and type II (K1-K8) intermediate filament proteins. In glandular epithelia, K8 becomes phosphorylated on S73 ((71)LLpSPL) in human cultured cells and tissues during stress, apoptosis, and mitosis. Of all known proteins, the context of the K8 S73 motif (LLS/TPL) is unique to type II keratins and is conserved in epidermal K5/K6, esophageal K4, and type II hair keratins, except that serine is replaced by threonine. Because knowledge regarding epidermal and esophageal keratin regulation is limited, we tested whether K4-K6 are phosphorylated on the LLTPL motif. K5 and K6 become phosphorylated in vitro on threonine by the stress-activated kinase p38. Site-specific anti-phosphokeratin antibodies to LLpTPL were generated, which demonstrated negligible basal K4-K6 phosphorylation. In contrast, treatment of primary keratinocytes and other cultured cells, and ex vivo skin and esophagus cultures, with serine/threonine phosphatase inhibitors causes a dramatic increase in K4-K6 LLpTPL phosphorylation. This phosphorylation is accompanied by keratin solubilization, filament reorganization, and collapse. K5/K6 LLTPL phosphorylation occurs in vivo during mitosis and apoptosis induced by UV light or anisomycin, and in human psoriatic skin and squamous cell carcinoma. In conclusion, type II keratins of proliferating epithelia undergo phosphorylation at a unique and conserved motif as part of physiological mitotic and stress-related signals.  相似文献   

3.
The major structural proteins of epithelia, the keratins, and the keratin filament-associated protein, filaggrin, were analyzed in more than 50 samples of human embryonic and fetal skin by one-dimensional SDS PAGE and immunoblotting with monoclonal and polyclonal antibodies. Companion samples were examined by immunohistochemistry and electron microscopy. Based on structural characteristics of the epidermis, four periods of human epidermal development were identified. The first is the embryonic period (before 9 wk estimated gestational age), and the others are within the fetal period: stratification (9-14 wk), follicular keratinization (14-24 wk), and interfollicular keratinization (beginning at approximately 24 wk). Keratin proteins of both the acidic (AE1-reactive, type I) and the basic (AE3-reactive, type II) subfamilies were present throughout development. Keratin intermediate filaments were recognized in the tissue by electron microscopy and immunohistochemical staining. Keratins of 50 and 58 kD were present in the epidermis at all ages studied (8 wk to birth), and those of 56.5 and 67 kD were expressed at the time of stratification and increased in abundance as development proceeded. 40- and 52-kD keratins were present early in development but disappeared with keratinization. Immunohistochemical staining suggested the presence of keratins of 50 and 58 kD in basal cells, 56.5 and 67 kD in intermediate cells, and 40 and 52 kD in the periderm as well as in the basal cells between the time of stratification and birth. Filaggrin was first detected biochemically at approximately 15 wk and was localized immunohistochemically in the keratinizing cells that surround hair follicles. It was identified 8-10 wk later in the granular and cornified cell layers of keratinized interfollicular epidermis. These results demonstrate the following. An intimate relationship exists between expression of structural proteins and morphologic changes during development of the epidermis. The order of expression of individual keratins is consistent with the known expression of keratins in simple vs. stratified vs. keratinized epithelia. Expression of keratins typical of stratified epithelia (50 and 58 kD) precedes stratification, and expression of keratins typical of keratinization (56.5 and 67 kD) precedes keratinization, which suggests that their expression marks the tissue commitment to those processes. Because only keratins that have been demonstrated in various adult tissues are expressed during fetal development, we conclude that there are no "fetal" keratins per se.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We used a proteomic approach to identify proteins that associate with keratins 8 or 18 (K8/K18) in a pervanadate-dependent manner. Pervanadate triggers Ran-K8/K18 binding and a gel-migration-shift of Ran from 25 to 27 kDa, which does not occur upon exposure to H2O2 or vanadate or if pervanadate is excluded during cell solubilization. Generation of 27-kDa Ran is not related to hyperphosphorylation, is heat-insensitive, but occurs upon conversion of Ran cysteines to cysteic acid. The pervanadate-mediated Ran cysteine --> cysteic acid oxidation and its related gel migration shift affects other proteins including actin. Mutation of the three Ran cysteines (Cys-85, -112, and -120) showed that Ran Cys-112 oxidation generates 27-kDa Ran and accounts for its keratin binding. Proteasome inhibition accentuates Ran-keratin binding after cell exposure to pervanadate. Therefore, cell-free exposure to pervanadate causes cysteine to cysteic acid oxidation of Ran and several other proteins and Ran-K8/K18 association. In cells, stabilization of oxidized Ran by proteasome inhibition promotes Ran-keratin interaction. Keratin sequestration of oxidized Ran may provide a back-up protective mechanism in some cases of oxidative injury.  相似文献   

5.
Methods to unequivocally assess and quantify exposure to organophosphate anti-cholinesterase agents are highly valuable, either from a biomonitoring or a forensic perspective. Since for both OP pesticides and various nerve agents the skin is a predominant route of entry, we hypothesized that proteins in the skin might represent an ideal source of unequivocal and persistent biomarkers for exposure to these compounds. In this exploratory study we show that keratin proteins in human skin are relevant binding sites for organophosphates. The thick cornified epithelium of human plantar skin (callus) was exposed to a selection of relevant organophosphorus compounds and keratin proteins were subsequently extracted. After carboxymethylation of cysteine residues, enzymatic digestion of the keratins with pronase and trypsin was performed and the resulting amino acid and peptides were analyzed to assess whether covalent adducts had formed. LC-tandem MS analysis of the pronase digests demonstrated that tyrosine and to a lesser extent serine residues were selectively modified by organophosphate pesticides (both phosphorothioates and the corresponding oxon forms) under physiological conditions. In addition, modification of tyrosine with the nerve agent VX was unequivocally assessed. In order to elucidate specific binding sites, LC-tandem MS analysis of trypsin digests showed two separate tryptic keratin fragments, i.e. LASY*LDK and SLY*GLGGSK, with Y* the modified tyrosine residues, originating from keratin 1/6 and keratin 10, respectively. These preliminary findings, revealing novel binding targets for anti-cholinesterase organophosphates, will form a firm basis for the development of novel (non-invasive) methods for assessment of exposure to organophosphates. Whether this binding will also have biological implications remains an issue for further investigations.  相似文献   

6.
Lungfishes are possibly the closest extant relatives of the land vertebrates (tetrapods). We report here the cDNA and predicted amino acid sequences of 13 different keratins (ten type I and three type II) of the lungfish Protopterus aethiopicus. These keratins include the orthologs of human K8 and K18. The lungfish keratins were also identified in tissue extracts using two-dimensional polyacrylamide gel electrophoresis, keratin blot binding assays and immunoblotting. The identified keratin spots were analyzed by peptide mass fingerprinting which assigned seven sequences (inclusively Protopterus K8 and K18) to their respective protein spot. The peptide mass fingerprints also revealed the fact that the major epidermal type I and type II keratins of this lungfish have not yet been sequenced. Nevertheless, phylogenetic trees constructed from multiple sequence alignments of keratins from lungfish and distantly related vertebrates such as lamprey, shark, trout, frog, and human reveal new insights into the evolution of K8 and K18, and unravel a variety of independent keratin radiation events.  相似文献   

7.
The intermediate filaments (IFs) form major structural elements of the cytoskeleton. In vitro analyses of these fibrous proteins reveal very different assembly properties for the nuclear and cytoplasmic IF proteins. However, keratins in particular, the largest and most heterogenous group of cytoplasmic IF proteins, have been difficult to analyze due to their rapid assembly dynamics under the near-physiological conditions used for other IF proteins. We show here that keratins, like other cytoplasmic IF proteins, go through a stage of assembling into full-width soluble complexes, i.e., "unit-length filaments" (ULFs). In contrast to other IF proteins, however, longitudinal annealing of keratin ULFs into long filaments quasi-coincides with their formation. In vitro assembly of IF proteins into filaments can be initiated by an increase of the ionic strength and/or lowering of the pH of the assembly buffer. We now document that 23-mer peptides from the head domains of various IF proteins can induce filament formation even under conditions of low salt and high pH. This suggests that the "heads" are involved in the formation and longitudinal association of the ULFs. Using a Tris-buffering protocol that causes formation of soluble oligomers at pH 9, the epidermal keratins K5/14 form less regular filaments and less efficiently than the simple epithelial keratins K8/18. In sodium phosphate buffers (pH 7.5), however, K5/14 were able to form long partially unraveled filaments which compacted into extended, regular filaments upon addition of 20 mM KCl. Applying the same assembly regimen to mutant K14 R125H demonstrated that mutations causing a severe disease phenotype and morphological filament abnormalities can form long, regular filaments with surprising efficiency in vitro.  相似文献   

8.
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met29>Met30>Met13, with Met79 being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo.  相似文献   

9.
The human keratins: biology and pathology   总被引:8,自引:2,他引:6  
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins--including numerous keratins characterized only recently--are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.  相似文献   

10.
Human hair is principally composed of hair keratins and keratin-associated proteins (KAPs) that form a complex network giving the hair its rigidity and mechanical properties. However, during their growth, hairs are subject to various treatments that can induce irreversible damage. For a better understanding of the human hair protein structures, proteomic mass spectrometry (MS)-based strategies could assist in characterizing numerous isoforms and posttranslational modifications of human hair fiber proteins. However, due to their physicochemical properties, characterization of human hair proteins using classical proteomic approaches is still a challenge. To address this issue, we have used two complementary approaches to analyze proteins from the human hair cortex. The multidimensional protein identification technology (MudPit) approach allowed identifying all keratins and the major KAPs present in the hair as well as posttranslational modifications in keratins such as cysteine trioxidation, lysine, and histidine methylation. Then two-dimensional gel electrophoresis coupled with MS (2-DE gel MS) allowed us to obtain the most complete 2-DE gel pattern of human hair proteins, revealing an unexpected heterogeneity of keratin structures. Analyses of these structures by differential peptide mapping have brought evidence of cleaved species in hair keratins and suggest a preferential breaking zone in α-helical segments.  相似文献   

11.
Keratins 8 and 18 (K8/18) heteropolymers may regulate cell signaling via the known K18 association with 14-3-3 proteins and 14-3-3 association with Raf-1 kinase. We characterized Raf-keratin-14-3-3 associations and show that Raf associates directly with K8, independent of Raf kinase activity or Ras-Raf interaction, and that K18 is a Raf physiologic substrate. Raf activation during oxidative and toxin exposure in cultured cells and animals disrupt keratin-Raf association in a phosphorylation-dependent manner. Mutational analysis showed that 14-3-3 residues that are essential for Raf binding also regulate 14-3-3-keratin association. Similarly, Raf phosphorylation sites that are important for binding to 14-3-3 are also essential for Raf binding to K8/18. Therefore, keratins may modulate some aspects of Raf signaling under basal conditions via sequestration by K8, akin to Raf-14-3-3 binding. Keratin-bound Raf kinase is released upon Raf hyperphosphorylation and activation during oxidative and other stresses.  相似文献   

12.
From the zebrafish Danio rerio, we have cDNA cloned and sequenced a novel type II and a novel type I keratin, termed DreK8 and DreK18, respectively. We identified DreK8/18 as the true orthologs of the human keratin pair K8/18 as follows: (i) MALDI-MS assignment to the biochemically identified K8 and K18 candidates that are co-expressed in simple epithelia and absent in epidermal keratinocytes; (ii) multiple sequence alignments and phylogenetic tree analysis, showing that DreK8, within the phylogenetic tree of type II keratins, forms a highly bootstrap-supported branch together with K8 from goldfish and rainbow trout, whereas DreK18, within the phylogenetic tree of type I keratins, groups with the K18 sequences from all other vertebrates studied; (iii) presence of a conserved motif in the tail domain of DreK8 (VxKxxETxDGxxVSESSxV) that is typical for all hitherto sequenced K8 orthologs. Moreover, several zebrafish type II keratin sequences published by other authors have now been assigned to epidermal keratins, previously identified biochemically.  相似文献   

13.
The quest for the function of simple epithelial keratins   总被引:7,自引:0,他引:7  
Simple epithelial keratins K8 and K18 are components of the intracellular cytoskeleton in the cells of the single-layered sheet tissues inside the body. As members of the intermediate filament family of proteins, their function has been a matter for debate since they were first discovered. Whilst there is an indisputable case for a structural cell-reinforcing function for keratins in the mutilayered squamous epithelia of external barrier tissues, some very different stress-protective features now seem to be emerging for the simple epithelial keratins. Even the emerging evidence of pathological mutations in K8/K18 looks very different from mutations in stratified epithelial keratins. K8/K18-like keratins were probably the first to evolve and, whilst stratified epithelial (keratinocyte) keratins have diversified into a large group of keratins highly specialised for providing mechanical stability, the simple epithelial keratins have retained early features that may protect the internal epithelia from a broader range of stresses, including osmotic stress and chemical toxicity.  相似文献   

14.
Oxidation of methionine (Met) to Met sulfoxide (MetSO) is a frequently found reversible posttranslational modification. It has been presumed that the major functional role for oxidation-labile Met residues is to protect proteins/cells from oxidative stress. However, Met oxidation has been established as a key mechanism for direct regulation of a wide range of protein functions and cellular processes. Furthermore, recent reports suggest an interaction between Met oxidation and O-phosphorylation. Such interactions are a potentially direct interface between redox sensing and signaling, and cellular protein kinase/phosphatase-based signaling. Herein, we describe the current state of Met oxidation research, provide some mechanistic insight into crosstalk between these two major posttranslational modifications, and consider the evolutionary significance and regulatory potential of this crosstalk.  相似文献   

15.
This study reports for the first time qualitative and quantitative differences in carbonylated proteins shed into blood as a function of increasing levels of OS. Carbonylated proteins in freshly drawn blood from pairs of diabetic and lean rats were derivatized with biotin hydrazide, dialyzed, and enriched with avidin affinity chromatography. Proteins thus selected were used in several ways. Differences between control and diabetic subjects in relative concentration of proteins was achieved by differential labeling of tryptic digests with iTRAQ reagents followed by reversed phase chromatography (RPC) and tandem mass spectrometry (MS/MS). Identification and characterization of OS induced post-translational modification sites in contrast was achieved by fractionation of affinity selected proteins before proteolysis and RPC-MS/MS. Relative quantification of peptides bearing oxidative modifications was achieved for the first time by selective reaction monitoring (SRM). Approximately 1.7% of the proteins in Zucker diabetic rat plasma were selected by the avidin affinity column as compared to 0.98% in lean animal plasma. Among the 35 proteins identified and quantified, Apo AII, clusterin, hemopexin precursor, and potassium voltage-gated channel subfamily H member 7 showed the most dramatic changes in concentration. Seventeen carbonylation sites were identified and quantified, 11 of which changed more than 2-fold in oxidation state. Three types of carbonylation were identified at these sites: direct oxidative cleavage from reactive oxygen species, glycation and addition of advanced glycation end products, and addition of lipid peroxidation products. Direct oxidation was the dominant form of carbonylation observed while hemoglobin and murinoglobulin 1 homologue were the most heavily oxidized proteins.  相似文献   

16.
We have performed a detailed characterization of recombinant human growth hormone that included the identification of the entire sequence with disulfide linkages as well as subtle modifications by a sensitive liquid chromatography coupled online with tandem mass spectrometry (LC‐MS) approach using the accurate peptide mass (FTICR MS) and sequence assignment (MS/MS measurement). The extent of oxidation, deamidation, and chain cleavages were measured by the ratio of peak areas of the nonmodified peptide vs. the sum of peak area of the nonmodified and modified peptides in the same LC‐MS analysis. The subtle but distinct differences were found in the recombinant human growth from the three manufacturers (the follow‐on, counterfeit, and the original innovator products). In relative comparison, the follow‐on product had the highest degree of oxidation at methionine residues, followed by the counterfeit product, and the original innovator product had the least amount of oxidation at all three sites with the similar oxidation order. In cases, the oxidation order was Met14 > Met125 > Met170. In contrast, the follow‐on had the least amount of deamidation at aspargine (Asn149), and the counterfeit had the highest degree of deamidation at this site. For the chain cleavage, the follow‐on product had the highest cleavage occurring at T 10 peptide (between Asn99 and Ser100), the counterfeit had the highest cleavage on T4 peptide, (between Glu30 and Phe31), and the original innovator product with the least amount of cleavages on both sites. These subtle but distinct differences are likely because of nonidentical manufacturing, formulation procedures, and storage conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
Five different type I keratins from a teleost fish, the rainbow trout Oncorhynchus mykiss, have been sequenced by cDNA cloning and identified at the protein level by peptide mass mapping using MALDI-MS. This showed that the entire range of type I keratins detected biochemically in this fish has now been sequenced. Three of the keratins are expressed in the epidermis (subtype Ie), whereas the other two occur in simple epithelia and mesenchymal cells (subtype Is). Among the Is keratins is an ortholog of human K18; the second Is polypeptide is clearly distinct from K18. We raised a new monoclonal antibody (F1F2, subclass IgG1) that specifically recognizes trout Is keratins, with negative reactions on zebrafish. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new sequences together with type I sequences from other vertebrates such as shark, zebrafish, and human; a recently sequenced lamprey Is keratin was applied as outgroup. This tree shows one branch defining the K18 orthologs and a second branch containing all other type I keratins (mostly subtype Ie). Within this second branch, the teleost keratins form a separate, highly bootstrap-supported twig. This tree leaves little doubt that the teleost Ie keratins diversified independently from the mammalian Ie keratins.  相似文献   

18.
We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize hydrophobic, alanine-rich mutants of the basic region/leucine zipper (bZIP) protein GCN4. These bacterially expressed proteins were generated to probe how small, alpha-helical proteins bind specific DNA sites. Enzymatic digestion mapping combined with MALDI-TOF MS characterization of protein fragments allowed us to resolve mass discrepancies between the expected and observed molecular mass measurements. Changes in mass were attributed to posttranslational modifications (PTMs) by proteolytic cleavage of the initiating methionine residue, carbamylation at the amino terminus, oxidation of histidine side chains, and oxidative addition of beta-mercaptoethanol (BME) at the cysteine side chain. Proteins can undergo a wide variety of co-translational modifications and PTMs during growth, isolation, and purification. Such changes in mass can only be detected by a high-resolution technique such as MALDI, which in conjunction with enzymatic digestion mapping, becomes a powerful methodology for characterization of protein structure.  相似文献   

19.
In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by‐products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero‐ and one‐dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self‐assembly mechanism highlights the importance of disulfide crosslinking in keratin self‐assembly.  相似文献   

20.
We show here that at least 5 keratin proteins are present in villous trophoblast and the same 5 in extravillous trophoblast. A further 14 tested were undetectable in these tissues. In contrast, 10 of the 19 keratins tested were present in amniotic epithelium. The marking of amniotic epithelium on the one hand, as distinct from villous and extravillous trophoblast on the other, can be achieved using 5 keratins (K4, 6, 13, 14 and 17) with a mixture of positive and negative discrimination that is expected, in combination, to be highly sensitive. All the specific keratins identified in trophoblast were apparently up-regulated on the pathway to extravillous trophoblast. Co-ordinated differentiation at the molecular expression level is indicated by this finding. The relevant keratins are K5, 7, 8, 18 and 19. Specific keratins have been identified that are down-regulated in villous trophoblast in pre-eclamptic pregnancy. This difference between healthy and pre-eclamptic chorionic villous trophoblast keratin expression was statistically significant in 4 out of the 5 keratins. This was not the case for the extravillous trophoblast at the immunofluorescence confocal level but significant differences were obtained using immunogold electron microscopy. We suggest that the villous trophoblast in pre-eclamptic placentae is cytoskeletally weaker with respect to the filaments made from these specific proteins and that this is one reason why, in pre-eclampsia, trophoblast is deported in greater quantity than in healthy placentae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号