首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous reports showed that hydrogen peroxide and the NO-generating reagent sodium nitroprusside (SNP)-modulated enzymatic activity of animal glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12). These modifications are suggested to have a physiological regulatory role. To gain further insight into this regulatory process the model ciliated protozoan Tetrahymena pyriformis was chosen. Both reagents inhibited growth of T. pyriformis cultures and produced a specific increase of GAPDH protein but only NO seemed to reduce GAPDH activity in cell-free extracts. Both specific activity and pI were found to be altered in the in vivo NO-treated purified enzyme, but no effect was detected by the in vivo H(2)O(2) treatment. Analytical chromatofocusing showed a single basic isoform (pI 8.8) in enzyme preparations from control and H(2)O(2)-treated cells. In contrast to this, three more acidic isoforms (pIs, 8.6, 8.0 and 7.3) were resolved in purified fractions from SNP-treated cells, suggesting post-translational modification of the enzyme by NO. Nevertheless, a decrease of GAPDH activity by H(2)O(2) and NO, mainly due to a decrease in its V(max) without apparent change in substrate affinity, was observed in vitro in the whole enzyme population. The increase of GAPDH protein level found in vivo suggests a cell response in order to compensate for the inhibitory effect on activity observed in the purified enzyme. This is the first report of NO- and H(2)O(2)-dependent effects on GAPDH of T. pyriformis, and identifies this key protein of central carbon metabolism as a physiological target of oxidative and nitrosative stress in this ciliated protozoan.  相似文献   

2.
The sesquiterpene lactone koningic acid (heptelidic acid) irreversibly inactivated glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde 3-phosphate: NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) (GAPDH) and thus inhibits glycolysis. The koningic-acid-producing strain of Trichoderma koningii M3947 was shown to contain the koningic-acid-resistant GAPDH isozyme (GAPDH I) under conditions of koningic acid production. In peptone-rich medium, however, no koningic acid production was observed, and the koningic-acid-sensitive GAPDH isozyme (GAPDH II), in addition to the resistant enzyme, was produced. Both enzymes were tetramer with a molecular mass of 152 kDa (4 x 38 kDa) and lost enzyme activity when two of the four cysteine residues reacted with koningic acid. The apparent Km values of GAPDH I and II for glyceraldehyde 3-phosphate were 0.54 mM and 0.33 mM, respectively. The former isozyme was inhibited 50% by 1 mM koningic acid but not affected at 0.1 mM, while the latter isozyme was inhibited 50% at 0.01 mM. The immunochemical properties and partial amino acid sequences suggested that the two isozymes have different molecular structures. These results suggest that GAPDH I is responsible for the glycolysis in T. koningii when koningic acid is produced.  相似文献   

3.
The study of thermal denaturation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of alpha-crystallin by differential scanning calorimetry (DSC) showed that the position of the maximum on the DSC profile (T(max)) was shifted toward lower temperatures with increasing alpha-crystallin concentration. The diminishing GAPDH stability in the presence of alpha-crystallin has been explained assuming that heating of GAPDH induces dissociation of the tetrameric form of the enzyme into dimers interacting with alpha-crystallin. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. Suppression of thermal aggregation of GAPDH by alpha-crystallin was studied by dynamic light scattering under the conditions wherein temperature was elevated at a constant rate. The construction of the light scattering intensity versus the hydrodynamic radius (R(h)) plots enabled estimating the hydrodynamic radius of the start aggregates (R(h,0)). When aggregation of GAPDH was studied in the presence of alpha-crystallin, the start aggregates of lesser size were observed.  相似文献   

4.
An acid alpha-glucosidase (EC 3.2.1.20) was purified to homogeneity from the culture medium of Tetrahymena thermophila CU 399. Its general molecular, catalytic and immunological properties were compared to those of the T. pyriformis W enzyme. The enzyme from T. thermophila was a 105-kD monomer and the N-terminus (25 amino acid residues) displayed some homology with that of T. pyriformis enzyme. The purified enzyme was most active at 56 degrees C and showed resistance to thermal inactivation. The acid alpha-glucosidase appears to have alpha-1,6-glucosidase as well as alpha-1,4-glucosidase activity. The Km values determined with p-nitrophenyl-alpha-glucopyranoside, maltose, isomaltose and glycogen were 0.7 mM, 2.5 mM, 28.5 mM and 18.5 mg/ml, respectively. The enzyme was antigenically distinct from T. pyriformis acid alpha-glucosidase.  相似文献   

5.
A lambda gt11 cDNA library from Candida albicans ATCC 26555 was screened by using pooled sera from two patients with systemic candidiasis and five neutropenic patients with high levels of anti-C. albicans immunoglobulin M antibodies. Seven clones were isolated from 60,000 recombinant phages. The most reactive one contained a 0.9-kb cDNA encoding a polypeptide immunoreactive only with sera from patients with systemic candidiasis. The whole gene was isolated from a genomic library by using the cDNA as a probe. The nucleotide sequence of the coding region showed homology (78 to 79%) to the Saccharomyces cerevisiae TDH1 to TDH3 genes coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and their amino acid sequences showed 76% identity; thus, this gene has been named C. albicans TDH1. A rabbit polyclonal antiserum against the purified cytosolic C. albicans GAPDH (polyclonal antibody [PAb] anti-CA-GAPDH) was used to identify the GAPDH in the beta-mercaptoethanol extracts containing cell wall moieties. Indirect immunofluorescence demonstrated the presence of GAPDH at the C. albicans cell surface, particularly on the blastoconidia. Semiquantitative flow cytometry analysis showed the sensitivity of this GAPDH form to trypsin and its resistance to be removed with 2 M NaCl or 2% sodium dodecyl sulfate. The decrease in fluorescence in the presence of soluble GAPDH indicates the specificity of the labelling. In addition, a dose-dependent GAPDH enzymatic activity was detected in intact blastoconidia and germ tube cells. This activity was reduced by pretreatment of the cells with trypsin, formaldehyde, and PAb anti-CA-GAPDH. These observations indicate that an immunogenic, enzymatically active cell wall-associated form of the glycolytic enzyme GAPDH is found at the cell surface of C. albicans cells.  相似文献   

6.
Ornithine decarboxylase (ornithine carboxy lyase; EC 4.1.1.17) (ODC) from Tetrahymena thermophila was purified 6,300 fold employing fractionated ammonium sulfate precipitation, gel permeation chromatography on Sephadex G-150, ion exchange chromatography on DEAE-Sepharose CL-6B, and preparative isoelectric focussing. The product obtained in 24% yield was a preparation of the specific activity of 10,200 nmol CO2.h-1.mg-1. The purified enzyme was rather stable at 37 degrees C (14% loss of activity within 1 h). The molecular and catalytic properties of this enzyme were investigated. The isoelectric point was 5.7 and the molecular weight (MW) was estimated to be 68,000 under nondenaturing conditions. The pH optimum was between 6.0 and 7.0, the Km for the substrate L-ornithine was 0.11 mM, and the Km for the cofactor pyridoxal 5-phosphate was 0.12 microM; the product of ODC catalysis, putrescine, was a poor inhibitor with an estimated Ki of about 10 mM. The enzyme was inhibited competitively by D-ornithine with a Ki of 1.6 mM and by alpha-difluoromethylornithine with a Ki of 0.15 mM. The latter one, an enzyme activated irreversible inhibitor of mammalian ODC, inactivated the enzyme from T. thermophila at high concentrations with a half life time of 14 min. Other basic amino acids, e.g. L-lysine, L-arginine, and L-histidine, were neither substrates nor inhibitors of the enzyme, as were the diamines 1,3-diaminopropanol and cadaverine, the polyamines spermidine and spermine and the cosubstrate analogues pyridoxal and pyridoxamine-5-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12),a key enzyme ofcarbon metabolism,was purified and characterized to homogeneity from skeletal muscle of Camelusdromedarius.The protein was purified approximately 26.8 folds by conventional ammonium sulphatefractionation followed by Blue Sepharose CL-6B chromatography,and its physical and kinetic propertieswere investigated.The native protein is a homotetramer with an apparent molecular weight of approximately146 kDa.Isoelectric focusing analysis showed the presence of only one GAPDH isoform with an isoelectricpoint of 7.2.The optimum pH of the purified enzyme was 7.8.Studies on the effect of temperature onenzyme activity revealed an optimal value of approximately 28-32 ℃ with activation energy of 4.9 kcal/mol.The apparent K_m values for NAD~ and DL-glyceraldehyde-3-phophate were estimated to be 0.025±0.040mM and 0.21±0.08 mM, respectively. The V_(max) of the purified protein was estimated to be 52.7±5.9 U/mg.These kinetic parameter values were different from those described previously, reflecting protein differencesbetween species.  相似文献   

8.
An acid α-glucosidase (EC 3.2.1.20) was purified to homogeneity from the culture medium of Tetrahymena thermophila CU 399. Its general molecular, catalytic and immunological properties were compared to those of the T. pyriformis W enzyme. The enzyme from T. thermophila was a 105-kD monomer and the N-terminus (25 amino acid residues) displayed some homology with that of T. pyriformis enzyme. The purified enzyme was most active at 56° C and showed resistance to thermal inactivation. The acid α-glucosidase appears to have α-1,6-glucosidase as well as α-1,4-glucosidase activity. The Km values determined with p-nitrophenyl-α-glucopyranoside, maltose, isomaltose and glycogen were 0.7 mM, 2.5 mM, 28.5 mM and 18.5 mg/ml, respectively. The enzyme was antigenically distinct from T. pyriformis acid α-glucosidase.  相似文献   

9.
The NAD+-dependent cytosolic glyceralehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) was purified from the skeletal muscle of European pilchard Sardina pilchardus and its physicochemical and kinetic properties were investigated. The purification method consisted of two steps, ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography, resulting in an approximately 78-fold increase in specific activity and a final yield of approximately 25%. The Michaelis constants (Kin) for NAD+ and D-glyceraldehyde-3-phosphate were 92.0 μM and 73.4 μM, respectively. The maximal velocity (Vmax) of the purified enzyme was estimated to be 37.6 U/mg. Under the assay conditions, the optimum pH and temperature were 8.0 and 30 ℃. The molecular weight of the purified enzyme was 37 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Non-denaturing polyacrylamide gels yielding a molecular weight of 154 kDa suggested that the enzyme is a homotetramer. Polyclonal antibodies against the purified enzyme were used to recognize the enzyme in different sardine tissues by Western blot analysis. The isoelectric point, obtained by an isoelectric focusing system in polyacrylamide slab gels, revealed only one GAPDH isoform (pI 7.9).  相似文献   

10.
Modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity from Lactococcus lactis was undertaken during batch fermentation on lactose, by adding various concentrations of iodoacetate (IAA), a compound which specifically inhibits GAPDH at low concentrations, to the culture medium. As IAA concentration is increased, GAPDH activity diminishes, provoking a decrease of both the glycolytic flux and the specific growth rate. This control exerted at the level of GAPDH was due partially to IAA covalent fixation but also to the modified NADH/NAD+ ratio. The mechanism of inhibition by NADH/NAD+ was studied in detail with the purified enzyme and various kinetic parameters were determined. Moreover, when GAPDH activity became limiting, the triose phosphate pool increased resulting in the inhibition of pyruvate formate lyase activity, while the lactate dehydrogenase is activated by the high NADH/NAD+ ratio. Thus, modifying the GAPDH activity provokes a shift from mixed-acid to homolactic metabolism, confirming the important role of this enzyme in controlling both the flux through glycolysis and the orientation of pyruvate catabolism.  相似文献   

11.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), localized in the cytosol of Trichomonas vaginalis, was partially purified. The enzyme is specific for NAD+ and is similar in most of its catalytic properties to glycolytic GAPDHs from other organisms. Its sensitivity to koningic acid is similar to levels observed in GAPDHs from eubacteria and two orders of magnitude lower than those observed for eukaryotic GAPDHs. The complete amino acid sequence of T. vaginalis GAPDH was derived from the N-terminal sequence of the purified protein and the deduced sequence of a cDNA clone. It showed great similarity to other eubacterial and eukaryotic GAPDH sequences. The sequence of the S-loop displayed a eubacterial signature. The overall sequence was more similar to eubacterial sequences than to cytosolic and glycosomal eukaryotic sequences. In phylogenetic trees obtained with distance matrix and parsimony methods T. vaginalis GAPDH clustered with its eubacterial homologs. GAPDHs of other amitochondriate protists, belonging to early branches of the eukaryotic lineage (Giardia lamblia and Entamoeba histolytica—Smith M.W. and Doolittle R.F., unpublished data in GenBank), showed typical eukaryotic signatures and clustered with other eukaryotic sequences, indicating that T. vaginalis GAPDH occupies an anomalous position, possibly due to horizontal gene transfer from a eubacterium. Correspondence to: M. Müller  相似文献   

12.
13.
The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, we focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and [35S] methionine incorporation into GAPDH protein increased 5-fold. The increase in GAPDH mRNA and GAPDH biosynthesis could be demonstrated using physiologic concentrations of insulin (0.24 nM), indicating that these effects are mediated through a specific interaction with the insulin receptor. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.  相似文献   

14.
Streptomyces arenae produces the antibiotic pentalenolactone, a highly specific inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). During the phase of pentalenolactone production,S. arenae expresses a pentalenolactone-insensitive GAPDH isoform; otherwise, a pentalenolactone-sensitive form is expressed. The gene of the pentalenolactone-insensitive GAPDH was cloned and sequenced. Regulatory elements typical for genes encoding antibiotic resistance and production are localized upstream and downstream of the open reading frame. No expression of pentalenolactone-insensitive GAPDH was detected inStreptomyces lividans transformed with the gene. InEscherichia coli, the gene was expressed from an inducedlac promoter. Amino-terminal sequencing of the heterologously expressed GAPDH proved its identity with pentalenolactone-insensitive GAPDH fromS. arenae. Sequence comparisons with GAPDH from other organisms showed a close relationship to GAPDH of plant chloroplasts, of other gram-positive bacteria, and of thermophilic gram-negative bacteria. Pentalenolactone-insensitive GAPDH differs from all closely related GAPDHs only in a few residues, none of which are directly involved in catalysis or substrate binding. The total amino acid composition is more similar to GAPDH of thermophilic species than to that of mesophilic species. The purified enzyme was moderately thermotolerant, which could be a side effect of the structural changes causing pentalenolactone-resistance.Abbreviations GAP Glyceraldehyde-3-phosphate - GAPDH Glyceraldehyde-3-phosphate dehydrogenase  相似文献   

15.
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) has been purified to homogeneity from skeletal muscle of the newt Pleurodeles waltl (Amphibia, Urodela). The purification procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulted in a 24-fold increase in specific activity and a final yield of approximately 46%. The native protein exhibited an apparent molecular weight of approximately 146 kDa with absolute specificity for NAD(+). Only one GAPDH isoform (pI 7.57) was obtained by chromatofocusing. The enzyme is an homotetrameric protein composed of identical subunits with an apparent molecular weight of approximately 37 kDa. Monospecific polyclonal antibodies raised in rabbits against the purified newt GAPDH immunostained a single 37-kDa GAPDH band in extracts from different tissues blotted onto nitrocellulose. A 510-bp cDNA fragment that corresponds to an internal region of a GapC gene was obtained by RT-PCR amplification using degenerate primers. The deduced amino acid sequence has been used to establish the phylogenetic relationships of the Pleurodeles enzyme--the first GAPDH from an amphibian of the Caudata group studied so far--with other GAPDHs of major vertebrate phyla.  相似文献   

16.
D Glyceraldehyde 3 phosphatedehydrogenase(GAPDH ,EC 1.2 .1.12 )isakeyenzymeoftheglycolyticpathwaythatispresentinthecytosolofallorganismssofarstudied[1] .TheglycolyticGAPDHhasbeenremarkablyconservedduringevolution ,havingahomotetramericstructurewithsubunitsof 35 - 37kD[1] .GAPDHhasbeenisolatedfromavarietyofspecies[2 ] ,includingmesophilic ,moderatelythermophilicandhyperthermophilicmicroorganisms[3 ] .Theseenzymes ,whichdifferinthermalstability ,havebeenshowntobehighlysimilarinaminoacidse…  相似文献   

17.
Recently, vinyl sulfones have been observed to selectively inhibit glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is an important ATP-generating enzyme in glycolysis. The possibility of using GAPDH as a biochemical parameter of cytotoxicity by vinyl sulfones was investigated using mouse lymphocytes. Incubation of lymphocyte GAPDH with ethylvinyl sulfone resulted in a pseudo-first-order loss of enzyme activity. The exposure of lymphocytes to ethylvinyl sulfone resulted in the decrease of GAPDH activity followed by ATP depletion and cell death, which were both dependent on the concentration of ethylvinyl sulfone. A further study on the time-dependent change indicated that cell death was preceded by ATP loss. Compared to ethylvinyl sulfone, divinyl sulfone was more than 8 times more potent in causing either ATP depletion or cell death.Abbreviations DTT dithiothreitol - GAPDH glyceraldehyde-3-phosphate dehydrogenase - NAD nicotinamide adenine dinucleotide  相似文献   

18.
The antibodies specific to an inactive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus prepared by the treatment of the tetrameric holoenzyme with glutaraldehyde were obtained. They were purified from the pool of polyclonal rabbit antibodies to GAPDH with the use of immobilized GAPDH cross-linked by glutaraldehyde as an affinity sorbent. Such antibodies were capable of interacting with the native enzyme, inducing its time-dependent inactivation; the effect was different with the apo- and holoenzyme forms. Differential scanning calorimetry of the purified [GAPDH].[antibody] complex revealed a large shift of the temperature corresponding to the maximal heat capacity of the holoenzyme towards the lower temperature. Again, the effect appeared to be different with the apoenzyme. Together, the results are consistent with the hypothesis that a specific antibody is able to exercise a certain strain on the target protein, altering its conformation toward the structure of the species which served to select the antibody. The possibility of preparing selective enzyme inhibitors based on the antibodies specific to inactive enzyme conformations is considered.  相似文献   

19.
Angiotensin-converting enzyme (ACE) inhibitors were excised from glyceraldehyde 3-phosphate dehydrogenase (GAPDH) preparations of tuna and porcine muscles by heating at 120 degrees C for 5 min in 1 M AcOH-20 mM HCl. The inhibitors were then purified by successive chromatographies. The final product from tuna was identified as Pro-Thr-His-Ile-Lys-Trp-Gly-Asp, which was the ACE inhibitor obtained from tuna muscle [Kohama et al. (1988) Biochem. Biophys. Res. Commun. 155, 332-337]. The porcine ACE inhibitor was found to be Pro-Ala-Asn-Ile-Lys-Trp-Gly-Asp, which was identical to the porcine muscle GAPDH peptide 79-86. These results strongly suggested that the ACE inhibitory octapeptides derived from GAPDH proteins by acid-limited proteolysis at Asp-Pro and Asp-Ala peptide bonds.  相似文献   

20.
Time-dependent thermal inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) present in the extract of mung beans at different periods of germination showed biphasic kinetics in the 12-h germinated seeds but single exponential decay at 24 h of germination. The glyceraldehyde 3-phosphate (G-3-P) concentration in the deproteinated extracts was found to increase with period of germination up to 36 h, parallel to that of GAPDH activity. G-3-P was found to offer protection of the enzyme against thermal inactivation and trypsin digestion. It is suggested that accumulation of G-3-P in germinating mung beans may be of physiological significance and it might offer protection to the enzyme in vivo against thermal inactivation and proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号