首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of multipotent cells in the adult tissues and organs of those vertebrates that are capable of regeneration has been accepted for decades. Although studies of vertebrate limb regeneration have yet to identify many of the specific molecules involved in regeneration, numerous tissue grafting experiments and studies of cell lineage have contributed significantly to an understanding of the origin, activation, proliferation and cell-cell interactions of these progenitor cells. This has allowed the development of ideas about the regulation of pattern formation to restore the structure and function of lost tissues and organs. An understanding of the molecular mechanisms controlling these processes has lagged behind the dramatic advances achieved with other model organisms. However, given the intense, new research interest in stem cells over the past few years, there is good reason to be encouraged that insights about the biology of mammalian stem cells will accelerate progress in understanding the biology of regeneration in organisms that can regenerate. Advances in regeneration research will then feed back in terms of devising new strategies for therapies to induce regeneration in organisms such as humans that have traditionally been viewed as incapable of regeneration.  相似文献   

2.
Ischemia causes oxygen deprivation, cell injury and related organ dysfunction. Although ischemic injury may be local, it involves many biochemical changes in different cell types. The ability of stem cells to differentiate into different cell lineages provides the possibility of their use in treating a variety of diseases requiring tissue repair or reconstitution, such as stroke, ischemic retinopathy, myocardial infarction, ischemic disorders of the liver, ischemic renal failure, and ischemic limb dysfunction. Several cell types including embryonic stem cells, various progenitor and stem cells of hematopoietic or mesenchymal origin have been used in attempts to reconstitute injured tissue. Xenologous or autologous stem cells may be administered either through the peripheral vascular system or directly by regional injection. The stem cells are then guided to the infarct site by homing signals. Either by cell differentiation or paracrine effects, stem cells or progenitor cells participate in the reconstruction of a favorable microenvironment resulting in neovascularization and tissue regeneration that eventually improve the physiological function of organs with ischemic damage.  相似文献   

3.
In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.  相似文献   

4.
Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.  相似文献   

5.
The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama). In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR) were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1(+) cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process.  相似文献   

6.
再生医学是一门研究如何促进创伤与组织再生及功能重建的新兴学科,主要通过研究干细胞分化、机体等正常组织创伤修复与再生等机制来维持、修复、再生或改善损伤组织和器官功能。脂肪干细胞(adipose-derived stem cells,ASCs)是近年来从脂肪组织中分离得到的一种具有多向分化潜能的干细胞,是一种足量的、可用于实际的、有一定吸引力的自体细胞代替的供体资源,并能够广泛的用于组织修复、再生、发育的可塑性及细胞治疗等研究中。阐述了脂肪干细胞在旁分泌、软组织重建及损伤修复、骨骼肌重建、心血管重建、神经系统重建及癌症转移与入侵方面的作用模式,概括总结了目前利用脂肪干细胞参与的临床治疗方法,以期对脂肪干细胞在再生医学中应用研究提供参考。  相似文献   

7.
This work is devoted to the vital topic of regeneration by stem cells. Cells-predecessors and differentiated cells can divide a limited number of times (Alberts et al., 1994) and are not capable of providing tissue regeneration throughout the ontogenesis. The tissue renewal during such a long period is impossible without participation of a specialized system responsible for regeneration. The given system is submitted by stem cells which are capable of being differentiated in all types of somatic cells and in a line of germ cells, and also have ability to self-renew during the whole life of an organism. Results of our research suggest that stem cells make up a universal mechanism of regeneration which has been formed during evolution.  相似文献   

8.
Singh SR  Liu W  Hou SX 《Cell Stem Cell》2007,1(2):191-203
All animals must excrete the waste products of metabolism. Excretion is performed by the kidney in vertebrates and by the Malpighian tubules in Drosophila. The mammalian kidney has an inherent ability for recovery and regeneration after ischemic injury. Stem cells and progenitor cells have been proposed to be responsible for repair and regeneration of injured renal tissue. In Drosophila, the Malpighian tubules are thought to be very stable and no stem cells have been identified. We have identified multipotent stem cells in the region of lower tubules and ureters of the Malpighian tubules. Using lineage tracing and molecular marker labeling, we demonstrated that several differentiated cells in the Malpighian tubules arise from the stem cells and an autocrine JAK-STAT signaling regulates the stem cells' self-renewal. Identifying adult kidney stem cells in Drosophila may provide important clues for understanding mammalian kidney repair and regeneration during injury.  相似文献   

9.
Deer antler regeneration: cells, concepts, and controversies   总被引:9,自引:0,他引:9  
The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.  相似文献   

10.
《Cytotherapy》2014,16(4):508-522
Background aimsStem cells are one of the most powerful tools in regeneration medicine. However, many limitations remain regarding the use of adult stem cells in clinical applications, including poor cell survival and low treatment efficiency. We describe an innovative three-dimensional cell mass (3DCM) culture that is based on cell adhesion (basic fibroblast growth factor–immobilized substrate) and assess the therapeutic potential of 3DCMs composed of human adipose tissue–derived stromal cells (hASCs).MethodsFor formation of a 3DCM, hASCs were cultured on a substrate with immobilized fibroblast growth factor-2. The angiogenic potential of 3DCMs was determined by immunostaining, fluorescence-activated cell sorting and protein analysis. To evaluate the vasculature ability and improved treatment efficacy of 3DCMs, the 3DCMs were intramuscularly injected into the ischemic limbs of mice.ResultsThe 3DCMs released various angiogenic factors (eg, vascular endothelial growth factor and interleukin-8) and differentiated into vascular cells within 3 days in normal medium. Blood vessel and tissue regeneration was clearly observed through visual inspection in the 3DCM-injected group. hASC injection slowed limb necrosis after treatment, but 50% of the mice ultimately had limb loss within 28 days. Most mice receiving 3DCMs had limb salvage (89%) or mild limb necrosis (11%).Conclusions3DCM culture promotes the efficient vascular differentiation of stem cells, and 3DCM transplantation results in the direct vascular regeneration of the injected cells and an improved therapeutic efficacy.  相似文献   

11.
Mesenchymal stem cells (MSCs) accelerate regeneration of ischemic or injured tissues by stimulation of angiogenesis through a paracrine mechanism. Tumor necrosis factor-α (TNF-α)-activated MSCs secrete pro-angiogenic cytokines, including IL-6 and IL-8. In the present study, using an ischemic hindlimb animal model, we explored the role of IL-6 and IL-8 in the paracrine stimulation of angiogenesis and tissue regeneration by TNF-α-activated MSCs. Intramuscular injection of conditioned medium derived from TNF-α-treated MSCs (TNF-α CM) into the ischemic hindlimb resulted in attenuated severe limb loss and stimulated blood perfusion and angiogenesis in the ischemic limb. Immunodepletion of IL-6 and IL-8 resulted in attenuated TNF-α CM-stimulated tissue repair, blood perfusion, and angiogenesis. In addition, TNF-α CM induced migration of human cord blood-derived endothelial progenitor cells (EPCs) through IL-6- and IL-8-dependent mechanisms in vitro. Intramuscular injection of TNF-α CM into the ischemic limb led to augmented homing of tail vein-injected EPCs into the ischemic limb in vivo and immunodepletion of IL-6 or IL-8 from TNF-α CM attenuated TNF-α CM-stimulated homing of EPCs. In addition, intramuscular injection of recombinant IL-6 and IL-8 proteins resulted in increased homing of intravenously transplanted EPCs into the ischemic limb and improved blood perfusion in vivo. These results suggest that TNF-α CM stimulates angiogenesis and tissue repair through an increase in homing of EPCs through paracrine mechanisms involving IL-6 and IL-8.  相似文献   

12.
糖尿病患者的皮肤组织易受内源性及外源性的各种损伤,且创面具有愈合慢、易感染等特点,这种特点在下肢皮肤创伤中表现尤为突出,常伴有高截肢风险,故糖尿病皮肤损伤可严重影响患者的生活质量。间充质干细胞(MSCs)是一类多能干细胞,其具有易分离、易培养、多向分化和免疫源性低等特征,目前已被广泛应用于创伤修复、组织再生等研究。对于糖尿病皮肤损伤,MSCs的临床移植治疗已成为继药物、手术之后的又一种治疗新技术。本文结合MSCs的生物学特性,对其应用在糖尿病皮肤损伤方面的研究进展做一综述。  相似文献   

13.
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle – the base from which it grows. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. This paper reviews our current understanding of the mechanisms underlying regeneration of antlers, and provides insights into the possible use for human regenerative medicine. Based on the definition, antler renewal belongs to a special type of regeneration termed epimorphic. However, histological examination failed to detect dedifferentiation of any cell type on the pedicle stump and the formation of a blastema, which are hallmark features of classic epimorphic regeneration. Instead, antler regeneration is achieved through the recruitment, proliferation and differentiation of the single cell type in the pedicle periosteum (PP). The PP cells are the direct derivatives of cells resident in the antlerogenic periosteum (AP), a tissue that exists in prepubertal deer calves and can induce ectopic antler formation when transplanted elsewhere on the deer body. Both the AP and PP cells express key embryonic stem cell markers and can be induced to differentiate into multiple cell lineages in vitro and, therefore, they are termed antler stem cells, and antler regeneration is a stem cell-based epimorphic regeneration. Comparisons between the healing process on the stumps from an amputated mouse limb and early regeneration of antlers suggest that the stump of a mouse limb cannot regenerate because of the limited potential of periosteal cells in long bones to proliferate. If we can impart a greater potential of these periosteal cells to proliferate, we might at least be able to partially regenerate limbs lost from humans. Taken together, a greater understanding of the mechanisms that regulate the regeneration of antlers may provide a valuable insight to aid the field of regenerative medicine.This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

14.
Amphibian limb regeneration is a process in which it has been suggested that cells of one differentiated type may dedifferentiate and give rise to cells of another type in the regenerate. We have used two tissue-specific hypomethylations in the newt cardioskeletal myosin heavy chain gene as lineage markers to follow the fate of cells during limb regeneration. Analysis of genomic DNA from different muscle cell populations allowed the assignment of one marker to the muscle (Hypo A) lineage and the other, more tentatively, to the 'connective tissue' (Hypo B) component of muscle. The contribution to regenerated limb cartilage and limb blastemal tissue by cells carrying these markers was estimated by quantitative analysis of Southern blot hybridizations using DNA from regenerate tissues. The results are consistent with a contribution of cells from both muscle and connective tissue lineages to cartilage in regenerated limbs. In addition, removal of the humerus at the time of amputation (eliminating any contribution from pre-existing cartilage), has provided evidence for an increased representation of cells carrying the connective tissue marker in regenerate cartilage but did not affect the representation of cells carrying the muscle cell marker.  相似文献   

15.
The homeostasis of continuously renewing human epidermis relies on the presence of adult stem cells, residing in the basal layer. Epidermal stem cells have been enriched and functionally characterized, but the exact location remained elusive. The human hair follicle and its pigmentation unit also cyclically regenerate from stem cells. Contrary to epidermal stem cells, human hair follicle stem cells have been localized, enriched, functionally and biochemically characterized. Their specific gene expression pattern has been established. The melanocyte stem population has also been localized and characterized. Finally, the hair follicle was found to harbor a number of other multipotent cells, which designates this unique organ as an alternative source of stem cells for tissue regeneration.  相似文献   

16.
Limb regeneration in larval and adult salamanders proceeds from a mound of mesenchymal stem cells called the limb blastema. The blastema gives rise just to those structures distal to its level of origin, and this property of positional identity is reset to more proximal values by treatment with retinoic acid. We have identified a cell surface protein, called Prod1/CD59, which appears to be a determinant of proximodistal identity. Prod1 is expressed in an exponential gradient in an adult limb as determined by detection of both mRNA and immunoreactive protein. Prod1 protein is up-regulated after treatment of distal blastemas with RA and this is particularly marked in cells of the dermis. These cells have previously been implicated in pattern formation during limb regeneration.  相似文献   

17.
The necessity of injury, nerves, and wound epidermis for urodele limb regeneration is well accepted. Whether one or more of these three factors is limiting in amputated nonregenerating limbs of other vertebrates is a problem area in need of resolution. One view, that higher vertebrates possess inadequate innervation for limb regeneration to occur, is not strongly supported by experimental results. Superinnervation of lizard and mammalian limbs fails to elicit limb regeneration. Furthermore, in the well-known cases of mammalian regeneration, deer antlers and rabbit ears, a nerve requirement has not been demonstrated.
In urodeles, the wound epidermis has recently been shown to have the role of maintaining dedifferentiated cells of the amputated limb stump in the cell cycle. The result of this wound epidermal stimulus is a sufficient number of cell divisions such that blastema formation occurs.
We postulate that in amputated limbs of higher vertebrates, the wound epidermis is nonfunctional. Dedifferentiated or undifferentiated cells are not maintained in the cell cycle and blastema formation therefore does not occur. Instead, tissue regeneration occurs precociously due to lack of a cycling stimulus. The scar tissue which forms at the limb tips of nonregenerating vertebrates is the result of a nonfunctional wound epidermis.  相似文献   

18.
19.
Participation of bone marrow derived cells in cutaneous wound healing   总被引:30,自引:0,他引:30  
Bone marrow has long been known to be a source of stem cells capable of regeneration of the hematopoeitic system. Recent reports, however, have indicated that bone marrow might also contain early stem cells that can differentiate into other organ tissues such as skin. While these studies have illustrated that bone marrow stem cells could find their way to the skin, they have not addressed the dynamics of how bone marrow stem cells might participate in the homeostatis and regeneration of skin. In this report we followed green fluorescent protein (GFP) labeled bone marrow transplanted into non-GFP mice in order to determine the participation of bone marrow stem cells in cutaneous wounds. Our results indicate that there are a significant number of bone marrow cells that traffic through both wounded and non-wounded skin. Wounding stimulated the engraftment of bone marrow cells to the skin and induced bone marrow derived cells to incorporate into and differentiate into non-hematopoietic skin structures. This report thus illustrates that bone marrow might be a valuable source of stem cells for the skin and possibly other organs. Wounding could be a stimulus for bone marrow derived stem cells to travel to organs and aid in the regeneration of damaged tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号