首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable morphological characters have obscured genealogical relationships in the Cape fossorial skink Acontias meleagris meleagris species complex. Currently the species complex contains four dubious operational taxonomic units (A. meleagris meleagris, A. m. orientalis, A. percivali tasmani and the morph lineicauda) with poorly defined species boundaries. In the present study we examine the evolutionary relationships within the species complex by sampling 24 skink populations from the known geographical distribution in the Western and Eastern Cape provinces of South Africa, representing a total of 119 specimens. We used partial sequence data derived from two mitochondrial DNA genes, 16S rRNA and COI, and one nuclear DNA gene, intron β‐fibrinogen (β‐fibint 7), to examine evolutionary relationships. Phylogenetic relationships were determined using both Maximum Parsimony (MP) and Bayesian inference (BI) from the combined mtDNA, nDNA and the total evidence data. Additionally we employed Maximum likelihood (ML) analyses on the total evidence data that comprised ~1.5 kb. Topologies derived from the combined mtDNA analyses were congruent with the total evidence analyses (mtDNA + nDNA) and retrieved five major clades with strong statistical support inferred from bootstrapping and posterior probabilities. The five clades were genealogically and geographically exclusive, diagnostic at both the mtDNA and nDNA level and characterized by pronounced sequence divergence, with no shared haplotypes between clades. Collectively these results suggest the presence of five putative cryptic operational taxonomic units within the A. meleagris meleagris species complex. Constraining the traditionally recognized taxa always retrieved a statistically worse topology suggesting that considerable taxonomic revision is required. Our results indicate that traditional morphological characters need to be reassessed to define the five novel lineages in the A. meleagris meleagris species complex. The phylogeographic pattern for the fossorial skinks we retrieved was novel compared to phylogeographic studies for codistributed above ground living taxa. These results suggest that the abiotic and biotic factors that impact subterranean taxa may differ from supraterranean taxa.  相似文献   

2.
The isolated uplands of the Australian arid zone are known to provide mesic refuges in an otherwise xeric landscape, and divergent lineages of largely arid zone taxa have persisted in these regions following the onset of Miocene aridification. Geckos of the genus Heteronotia are one such group, and have been the subject of many genetic studies, including H. spelea, a strongly banded form that occurs in the uplands of the Pilbara and Central Ranges regions of the Australian arid zone. Here we assess the systematics of these geckos based on detailed examination of morphological and genetic variation. The H. spelea species complex is a monophyletic lineage to the exclusion of the H. binoei and H. planiceps species complexes. Within the H. spelea complex, our previous studies based on mtDNA and nine nDNA loci found populations from the Central Ranges to be genetically divergent from Pilbara populations. Here we supplement our published molecular data with additional data gathered from central Australian samples. In the spirit of integrative species delimitation, we combine multi-locus, coalescent-based lineage delimitation with extensive morphological analyses to test species boundaries, and we describe the central populations as a new species, H. fasciolatus sp. nov. In addition, within the Pilbara there is strong genetic evidence for three lineages corresponding to northeastern (type), southern, and a large-bodied melanic population isolated in the northwest. Due to its genetic distinctiveness and extreme morphological divergence from all other Heteronotia, we describe the melanic form as a new species, H. atra sp. nov. The northeastern and southern Pilbara populations are morphologically indistinguishable with the exception of a morpho-type in the southeast that has a banding pattern resembling H. planiceps from the northern monsoonal tropics. Pending more extensive analyses, we therefore treat Pilbara H. spelea as a single species with phylogenetic structure and morphological heterogeneity.  相似文献   

3.
We conducted a phylogenetic study of pygopodid lizards, a group of 38 species endemic to Australia and New Guinea, with two major goals: to reconstruct a taxonomically complete and robustly supported phylogeny for the group and to use this information to gain insights into the tempo, mode, and timing of the pygopodid radiation. Phylogenetic analyses of mitochondrial DNA (mtDNA), nuclear DNA (nDNA), and previously published morphological data using parsimony, maximum likelihood, and Bayesian methods on the independent and combined three data sets yielded trees with similar and largely stable ingroup topologies. However, relationships among the six most inclusive and unambiguously supported clades (Aprasia, Delma, Lialis, Ophidiocephalus, Pletholax, and Pygopus) varied depending on data set analyzed. We used parametric bootstrapping to help us understand which of the three-branch schemes linking these six taxa was most plausible given our data. We conclude based on our results that the arrangement ((((Delma, Lialis)Pygopus)Pletholax)(Aprasia, Ophidiocephalus)) represents the best hypothesis of intergeneric relationships. A second major problem to arise in our study concerned the inability of our two outgroup taxa (Diplodactylus) to root trees properly; three different rooting locations were suggested depending upon analysis. This long-branch attraction problem was so severe that the outgroup branch also interfered with estimation of ingroup relationships. We therefore used the molecular clock method to root the pygopodid tree. Results of two independent molecular clock analyses (mtDNA and nDNA) converged upon the same root location (branch leading to Delma). We are confident that we have found the correct root because the possibility of our clock estimates agreeing by chance alone is remote given that there are 65 possible root locations (branches) on the pygopodid tree (approximately 1 in 65 odds). Our analysis also indicated that Delma fraseri is not monophyletic, a result supported by a parametric bootstrapping test. We elevated the Western Australian race, Delma f. petersoni, to species status (i.e., Delma petersoni) because hybridization and incomplete lineage sorting could be ruled out as potential causes of this paraphyletic gene tree and because D. grayii is broadly sympatric with its sister species D. fraseri. Climate changes over the past 23 million years, which transformed Australia from a wet, green continent to one that is largely dry and brown, have been suspected as playing a major role in the diversification of Australia's temperate biotas. Our phylogenetic analyses of pygopodid speciation and biogeography revealed four important findings consistent with this climate change diversification model: (1) our fossil-calibrated phylogeny shows that although some extant pygopodid lineages predate the onset of aridification, 28 of 33 pygopodid species included in our study seem to have originated in the last 23 million years; (2) relative cladogenesis tests suggest that several major clades underwent higher than expected rates of speciation; (3) our findings support earlier studies showing that speciation of mesic-adapted biotas in the southeastern and southwestern corners of Australia largely occurred within each of these regions between 12 and 23 million years ago as opposed to repeated dispersal between these regions; and (4) we have identified for the first time the existence of several pairs of sympatric sister species of lizards living in arid and semiarid ecosystems. These sympatric sister species seem to be younger than allopatric or parapatric sister-species pairs, which is not consistent with previous beliefs.  相似文献   

4.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species.  相似文献   

5.
We provide a review of the systematics of Herichthys by evaluating the usefulness of several mitochondrial and nuclear genetic markers together with morphological data. The nDNA next‐generation sequencing ddRAD analysis together with the mtDNA cytochrome b gene provided well‐resolved and well‐supported phylogenies of Herichthys. On the other hand, the nDNA S7 introns have limited resolution and support and the COI barcoding analysis completely failed to recover all but one species of Herichthys as monophyletic. The COI barcoding as currently implemented is thus insufficient to distinguish clearly distinct species in the genus Herichthys that are supported by other molecular markers and by morphological characters. Based on our results, Herichthys is composed of 11 species and includes two main clades (the H. labridens and H. cyanoguttatus species groups). Herichthys bartoni is in many respects the most plesiomorphic species in the genus and has a conflicting phylogenetic position between mtDNA and nDNA markers, where the robust nDNA ddRAD data place it as a rather distant basal member of the H. labridens species group. The mtDNA of H. bartoni is on the other hand only slightly divergent from the sympatric and syntopic H. labridens, and the species thus probably have hybridized in the relatively recent past. The sympatric and syntopic Herichthys steindachneri and H. pame are supported as sister species. The Herichthys cyanoguttatus species group shows two well‐separated basal species (the northernmost H. minckleyi and the southernmost H. deppii) followed by the closely related and centrally distributed species H. cyanoguttatus, H. tepehua, H. carpintis, and H. tamasopoensis whose relationships differ between analyses and show likely hybridizations between themselves and the two basal species as suggested by conflicts between DNA analyses. Several instances of introgressions/hybridizations have also been found between the two main clades of Herichthys.  相似文献   

6.
While many studies have documented the effect that glacial cycles have had on northern hemisphere species, few have attempted to study the associated effect of aridification at low latitudes in the southern hemisphere. We investigated the past effects that cyclic aridification may have had on the population structure and history of a widespread endemic Australian bird species, the Australian magpie (Gymnorhina tibicen). One thousand one hundred and sixty-six samples from across its native range were analysed for mitochondrial control region sequence variation and variation at six microsatellite loci. Analysis of mitochondrial control region sequence data indicated monophyletic clades that were geographically congruent with an eastern and western region. The contemporary distribution of east and west clades is nonoverlapping but in close proximity. Populations were estimated to have diverged in the Pleistocene around 36,000 years ago. The putative Carpentarian and Nullarbor arid barriers appear to be associated with the divergence between east and west mainland populations. Nested clade analysis indicated a signature of range expansion in the eastern region suggesting movement possibly inland and northward subsequent to the last period of aridity. The island population of Tasmania was of very recent origin, possibly since sea levels rose 16,000 years ago. Given the east-west structure, there was no congruence between morphology and recent history of this species indicating a lack of support for morphological taxa. Overall mitochondrial DNA and microsatellite variation suggest that increasing aridity and Pleistocene refugia played a role in structuring populations of the Australian magpie; however, the dispersal ability and generalist habitat requirements may have facilitated the movement of magpies into an almost contiguous modern distribution across the continent. This study supports the idea that Pleistocene aridification played an important role in structuring intraspecific variation in low latitudinal southern hemisphere avian species.  相似文献   

7.
8.
Chionactis occipitalis (Western Shovel-nosed Snake) is a small colubrid snake inhabiting the arid regions of the Mojave, Sonoran, and Colorado deserts. Morphological assessments of taxonomy currently recognize four subspecies. However, these taxonomic proposals were largely based on weak morphological differentiation and inadequate geographic sampling. Our goal was to explore evolutionary relationships and boundaries among subspecies of C. occipitalis, with particular focus on individuals within the known range of C. o. klauberi (Tucson Shovel-nosed snake). Population sizes and range for C. o. klauberi have declined over the last 25 years due to habitat alteration and loss prompting a petition to list this subspecies as endangered. We examined the phylogeography, population structure, and subspecific taxonomy of C. occipitalis across its geographic range with genetic analysis of 1100 bases of mitochondrial DNA sequence and reanalysis of 14 morphological characters from 1543 museum specimens. We estimated the species gene phylogeny from 81 snakes using Bayesian inference and explored possible factors influencing genetic variation using landscape genetic analyses. Phylogenetic and population genetic analyses reveal genetic isolation and independent evolutionary trajectories for two primary clades. Our data indicate that diversification between these clades has developed as a result of both historical vicariance and environmental isolating mechanisms. Thus these two clades likely comprise ‘evolutionary significant units’ (ESUs). Neither molecular nor morphological data are concordant with the traditional C. occipitalis subspecies taxonomy. Mitochondrial sequences suggest specimens recognized as C. o. klauberi are embedded in a larger geographic clade whose range has expanded from western Arizona populations, and these data are concordant with clinal longitudinal variation in morphology.  相似文献   

9.
Brant SV  Ortí G 《Molecular ecology》2003,12(10):2853-2859
We describe the genetic structure of populations of the intestinal nematode Longistriata caudabullata (Trichostrongyloidea: Heligmosomidae), a common parasite of short-tailed shrews (genus Blarina, Insectivora: Soricidae). Parasites and hosts were collected from a transect across a contact zone between two species of hosts, Blarina brevicauda and B. hylophaga, in central North America. An 800-base pairs (bp) fragment of the ND4 mitochondrial DNA (mtDNA) gene was sequenced for 28 worms and a 783-bp fragment of the mtDNA control region was analysed for 16 shrews. Phylogenetic analyses of mtDNA sequences revealed reciprocal monophyly for the shrew species, concordant with morphological diagnosis, and supported the idea that the transect cuts through a secondary contact zone between well-differentiated B. brevicauda and B. hylophaga. In contrast to this pattern, the parasitic nematode mtDNA phylogeny was not subdivided according to host affiliation. Genealogical discordance between parasite and host phylogenies suggests extensive gene flow among parasites across the host species boundary.  相似文献   

10.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

11.
The high level of phenotypic diversity in southern African tent tortoises (Psammobates tentorius complex) has for decades prevented systematists from developing a stable taxonomy for the group. Here, we used a comprehensive DNA sequence dataset (mtDNA: Cytb, ND4, ND4 adjacent tRNA-His, and tRNA-Ser, 12S, 16S; and nDNA: PRLR gene) of 455 specimens, and the latest phylogenetic and species delimitation analytical procedures, to unravel the long-standing P. tentorius complex systematic puzzle. Our results for mtDNA and nDNA were incongruent, with the poorly supported nDNA phylogeny differentiating the three recognized subspecies, and showing potential hybridization in some regions. In contrast, the concatenated mtDNA phylogeny identified seven operational taxonomic units, with strong support. Clades 1, 4, 5, and 7 corresponded to tortoises identified as P. t. tentorius, clade 3 to P. t. trimeni, and clades 2 and 6 to P. t. verroxii. Our analyses showed conflicting topologies for the placement of C6 (P. t. verroxii north of the Orange River), with stronger support for it being sister to C2 + C3 than to the other clades. Clades 1, 2, and 6 had significantly higher genetic diversity than clades 3, 4, 5, and 7, perhaps because these clades inhabit substantially larger areas. The potential for future cladogenic radiations seems high in C1 and C6, particularly in C6 for which the within-clade diversification level was highest. Further research involving microsatellite DNA, phylogeographic evaluations, and morphological variation among clades is crucial for understanding the adaptive radiation of the P. tentorius complex and for modifying their taxonomy.  相似文献   

12.
The Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae) are economically important for the biological control of lepidopteran stemboring pests associated with gramineous crops. Some members of the complex successfully parasitize numerous stemborer pest species, however certain geographic populations have demonstrated variation in the range of hosts that they parasitize. In addition, the morphology of the complex is highly conserved and considerable confusion surrounds the identity of species and host-associated biotypes. We generated nucleotide sequence data for two mtDNA genes (COI, 16S) and three anonymous nuclear loci (CfBN, CfCN, CfEN) for the C. flavipes complex. To analyze genetic variation and relationships among populations we used (1) concatenated mtDNA and nDNA data, (2) a nDNA multilocus network approach, and (3) two species tree inference methods, i.e. Bayesian estimation of species trees (BEST) and Bayesian inference of species trees from multilocus data with (*)BEAST. All phylogenetic analyses provide strong support for monophyly of the complex and the presence of at least four species, C. chilonis (from China and Japan), C. sesamiae (from Africa), C. flavipes (originating from the Indo-Asia region but introduced into Africa and the New World), and C. nonagriae (from Australia and Papua New Guinea). Haplotype diversity of geographic populations relates to historical biogeographic barriers and biological control introductions, and reflects previous reports of ecological variation in these species. Strong discordance was found between the mitochondrial and nuclear markers in the Papua New Guinea haplotypes, which may be an outcome of hybridization and introgression of C. flavipes and C. nonagriae. The position of Cotesia flavipes from Japan was not well supported in any analysis and was the sister taxon to C. nonagriae (mtDNA, (*)BEAST), C. flavipes (nDNA) or C. flavipes+C. nonagriae (BEST) and, may represent a cryptic species. The concatenated five gene phylogenetic analyses did not support the overall separation and monophyly of clades associated with different host species, although some clades did show specific host associations, possibly due to localized host availability, rather than host specificity. Our results provide a framework for assessing whether distinct lineages represent cryptic species, and for examining parasitoid-host evolution and compatibility more generally. Given the limitations of morphological based identification for members of this complex, molecular identification is recommended prior to any biological control introductions.  相似文献   

13.
Monomorium is a large and diverse ant genus with speciose radiations in both the Afrotropical and Australian regions. According to the most recent taxonomic revision, many Australian species are characterised by very broad distributions and variable morphology, which suggests that some species may be unrecognised species complexes. With a continent‐wide distribution and diverse yet overlapping morphology, M. rothsteini (Forel) is representative of the greater challenge that exists in Australian Monomorium systematics. Here we investigate species boundaries in M. rothsteini using a molecular phylogenetic framework to interpret the complex overlap of nine morphological characters (with 31 states) and examine biogeographic relationships among the lineages. Bayesian inference resolved 38 mtDNA lineages that were morphologically separable, at least from their sister lineage. Although the morphological characters were intermixed across the phylogeny, instances of inseparable morphology among sister clades was rare. Seventeen lineages exhibited complete morphological overlap with one or more other lineages and could not be separated by Principal Component Analysis based on 12 morphometric variables. Two‐thirds of all lineages occurred sympatrically with one or more both genetically and morphologically divergent lineages. The two nuclear markers EF1αF2 and wingless were used to generate haplotype networks which were characterised by a star‐like pattern indicative of a rapid and recent radiation. Several haplotypes for both nuclear gene regions were shared among individuals occurring in separate mtDNA clades which we were also unable to distinguish morphologically or that were occurring in sympatry, indicating possible introgression in both the mtDNA and nuclear genomes. Clear biogeographic affinities among samples within a lineage were detected but there was no overall pattern in the biogeographic relationships among the lineages. We conclude that M. rothsteini is a large species complex that has undergone a complex evolutionary history following aridification of the Australian continent, and discuss the implications of this conclusion for the systematics of Australian Monomorium more generally.  相似文献   

14.

Background

DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data.

Methodology/Principal Findings

The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n.

Conclusion/Significance

In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.  相似文献   

15.
The parrotbills (Paradoxornithidae, meaning "birds of paradox," Aves) are a group of Old World passerines with perplexing taxonomic histories due to substantial morphological and ecological variation at various levels. In this study, phylogenetic relationships of the parrotbills were reconstructed based on sequences of two mitochondrial segments and three nuclear coding regions. Three major clades with characteristic body size and plumage coloration were found in both mtDNA and nuclear gene trees. However, mtDNA phylogeny suggested that the Paradoxornithidae is paraphyletic and relationships among three major parrotbill clades were poorly resolved. On the contrary, apparent and well-supported monophyletic relationships among the three major clades of Paradoxornithidae were revealed by concatenated nuclear dataset. Since paraphyly based on mtDNA data has commonly been found within avian taxa, the conflicting phylogenetic signal between mtDNA and nuclear loci revealed in this study indicates that results obtained from mtDNA dataset alone need to be evaluated with caution. Taxonomic implications of our phylogenetic findings are discussed. These phylogenies also point out areas for future investigation regarding the rapid diversification, morphological evolution and environmental adaptation of various parrotbill species or species complexes.  相似文献   

16.
The gecko genus Phyllopezus occurs across South America's open biomes: Cerrado, Seasonally Dry Tropical Forests (SDTF, including Caatinga), and Chaco. We generated a multi-gene dataset and estimated phylogenetic relationships among described Phyllopezus taxa and related species. We included exemplars from both described Phyllopezus pollicaris subspecies, P. p. pollicaris and P. p.przewalskii. Phylogenies from the concatenated data as well as species trees constructed from individual gene trees were largely congruent. All phylogeny reconstruction methods showed Bogertia lutzae as the sister species of Phyllopezus maranjonensis, rendering Phyllopezus paraphyletic. We synonymized the monotypic genus Bogertia with Phyllopezus to maintain a taxonomy that is isomorphic with phylogenetic history. We recovered multiple, deeply divergent, cryptic lineages within P. pollicaris. These cryptic lineages possessed mtDNA distances equivalent to distances among other gekkotan sister taxa. Described P. pollicaris subspecies are not reciprocally monophyletic and current subspecific taxonomy does not accurately reflect evolutionary relationships among cryptic lineages. We highlight the conservation significance of these results in light of the ongoing habitat loss in South America's open biomes.  相似文献   

17.
Studies of genetic contact zones provide valuable information regarding the processes of population divergence, adaptation and speciation. In this paper, I examine transitions in morphology, mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) haplotypes across a recent secondary contact zone in a Hispaniolan lizard Ameiva chrysolaema . Maximum likelihood cline fitting analyses suggest non-coincidence of cline centers and that the mtDNA cline is significantly displaced to the west of the remaining clines. nDNA and morphological clines are coincident and tend to be associated with the prevailing environmental gradient. The lack of cytonuclear disequilibrium near the center of the contact zone and the non-coincidence of character clines suggest that this zone does not conform to a tension zone model of hybridization; thus, gene flow across the zone does not seem to be impeded. The extremely narrow width of the dorsal scale size cline and the close association of this cline with the steepness of the environmental (precipitation) gradient suggest that this character may be under environmental selection. Taken together, this contact zone appears to be structured by a combination of mtDNA introgression, possibly associated with eastward movement of the zone, and environmental selection on some characters.  相似文献   

18.
Taeniopoda is a genus of grasshoppers currently represented by 12 species distributed from southern USA to Panama, with most of them occurring along the transitional Nearctic–Neotropical region in central and southern Mexico. Despite being a small group of conspicuous, colourful species, the systematics of Taeniopoda has been largely neglected, including its phylogenetic affinity with the morphologically similar, monotypic genus Romalea. Here, we assessed the species limits in 11 of the species of Teniopoda based on two mitochondrial (mt) markers (COI, cyt b). Phylogenetic relationships were reconstructed adding two nuclear gene markers (28S, H3). A relaxed molecular clock analysis was performed based on the mt markers. We detected nuclear mt paralogues (numts) and the probable introgression of T. tamaulipensis mtDNA in specimens of T. eques from central Mexico. Between six and 14 species of Taeniopoda were delimited by the sequence-based approaches performed (COI divergence with thresholds of 1 and 2%; General Mixed Yule-Coalescent (GMYC) model). The GMYC and 1% threshold analyses with COI were more congruent with the currently recognized morphology-based taxonomy with 10 and 11 putative species, respectively. Four of these species were regarded as ‘stable’, since they were supported by at least one of the molecular analyses and by diagnostic morphological features. The species-based phylogeny recovered Taeniopoda as paraphyletic with respect to the monotypic genus Romalea. Three morphologically and geographically congruent major clades were recovered, two with species having a considerably elevated pronotal crest and one with its members having it less elevated. The origin and subsequent diversification of Taeniopoda were estimated to occur from the mid and late Miocene to Pliocene, respectively. The current species diversity in Taeniopoda was estimated to occur during the Pleistocene, which was probably influenced by the climatic oscillations that occurred during this period and the uplift of mountain ranges in Central America.  相似文献   

19.
Desert mound springs of the Great Artesian Basin in central Australia maintain an endemic fauna that have historically been considered ubiquitous throughout all of the springs. Recent studies, however, have shown that several endemic invertebrate species are genetically highly structured and contain previously unrecognised species, suggesting that individuals may be geographically 'stranded in desert islands'. Here we further tested the generality of this hypothesis by conducting genetic analyses of the obligate aquatic phreatoicid isopod Phreatomerus latipes. Phylogenetic and phylogeographic relationships amongst P. latipes individuals were examined using a multilocus approach comprising allozymes and mtDNA sequence data. From the Lake Eyre region in South Australia we collected data for 476 individuals from 69 springs for the mtDNA gene COI; in addition, allozyme electrophoresis was conducted on 331 individuals from 19 sites for 25 putative loci. Phylogenetic and population genetic analyses showed three major clades in both allozyme and mtDNA data, with a further nine mtDNA sub-clades, largely supported by the allozymes. Generally, each of these sub-clades was concordant with a traditional geographic grouping known as spring complexes. We observed a coalescent time between ~2-15 million years ago for haplotypes within each of the nine mtDNA sub-clades, whilst an older total time to coalescence (>15 mya) was observed for the three major clades. Overall we observed that multiple layers of phylogeographic history are exemplified by Phreatomerus, suggesting that major climate events and their impact on the landscape have shaped the observed high levels of diversity and endemism. Our results show that this genus reflects a diverse fauna that existed during the early Miocene and appears to have been regionally restricted. Subsequent aridification events have led to substantial contraction of the original habitat, possibly over repeated Pleistocene ice age cycles, with P. latipes populations becoming restricted in the distribution to desert springs.  相似文献   

20.
Alkaline gel electrophoresis, pulsed field gel electrophoresis, and quantitative PCR analyses (QPCR) of the nuclear (nDNA) and mitochondrial (mtDNA) genomes were used to assess DNA integrity in the spermatozoa of three species exposed to oxidative stress. In human and murine spermatozoa, the mtDNA was significantly more susceptible to H2O2-mediated damage than nDNA. In both eutherian species, exposure to 250 microM H2O2 induced around 0.6 lesions/10 kb of mtDNA. The mtDNA of human spermatozoa was particularly vulnerable to oxidative stress; 0.25, 1, and 5 mM H2O2 inducing DNA damage equivalent to 0.62, 1.34, and 1.42 lesions/10 kb, respectively. Such results emphasize the diagnostic significance of mtDNA as a biomarker of oxidative stress in the male germ line. In contrast, no damage could be detected by QPCR in the nDNA of either eutherian species, on exposure to H2O2 at doses as high as 5 mM. However, electrophoretic analysis indicated that severe oxidative stress could induce detectable nDNA fragmentation in human, but not murine spermatozoa. The mtDNA of tammar wallaby spermatozoa was relatively resistant to oxidative stress, only exhibiting damage (0.6 lesions/10 kb DNA) on exposure to 5 mM H2O2. By contrast, the nDNA of wallaby spermatozoa was significantly more susceptible to this oxidant than the other species. Such vulnerability is consistent with the lack of disulfide cross-linking in marsupial sperm chromatin and suggests that chromatin condensation during epididymal maturation may be important in establishing the resistance of these cells to the genotoxic effects of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号