首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Mga is a DNA-binding protein that activates expression of several important virulence genes in the group A streptococcus (GAS), including those encoding M protein (emm), C5a peptidase (scpA) and Mga (mga). To determine the functionality of four potential helix-turn-helix DNA-binding motifs (HTH1-HTH4) identified within the amino-terminus of Mga, alanine substitutions were introduced within each domain in a MBP-Mga fusion allele and purified proteins were assayed for binding to Mga-specific promoter fragments (Pmga, PscpA and Pemm) in vitro. Although HTH-1 and HTH-2 mutations showed wild type DNA-binding activity, an altered HTH-3 domain resulted in reduced binding to the three promoters and an HTH-4 mutant was devoid of detectable binding activity. Plasmid-encoded expression of the HTH-3 and HTH-4 alleles from a constitutive promoter (Pspac) in the mga-deleted GAS strain JRS519 demonstrated that Mga-regulated emm expression correlated directly to the DNA-binding activity observed for each mutant protein in vitro. Single-copy expression of HTH-3 and HTH-4 from their native Pmga resulted in a dramatic reduction in autoregulated mga expression in both mutant strains. Thus, Mga appears to contain two DNA-binding domains (HTH-3 and HTH-4) that are required for direct activation of the Mga virulence regulon in vivo.  相似文献   

9.
10.
The Mga virulence regulon: infection where the grass is greener   总被引:3,自引:0,他引:3  
Co-ordinate regulation of virulence gene expression in response to different host environments is central to the success of the group A streptococcus (GAS, Streptococcus pyogenes) as an important human pathogen. Mga represents a ubiquitous stand-alone virulence regulator that controls genes (Mga regulon) whose products are necessary for adherence, internalization and host immune evasion. Mga highly activates a core set of virulence genes, including its own gene, by directly binding to their promoters. Yet, Mga also influences expression of over 10% of the GAS genome, primarily genes and operons involved in metabolism and sugar utilization. Expression of the Mga regulon is influenced by conditions that signify favourable growth conditions, presumably allowing GAS to take advantage of promising new niches in the host. The ability of Mga to respond to growth signals clearly involves regulation of mga expression via global regulatory networks such as RALPs, Rgg/RopB and the catabolite control protein CcpA. However, the presence of predicted PTS regulatory domains (PRDs) within Mga suggests an intriguing model whereby phosphorylation of Mga by the PTS phosphorelay might link growth and sugar utilization with virulence in GAS. As Mga homologues have been found in several important Gram-positive pathogens, the Mga regulon could provide a valuable paradigm for increasing our understanding of global virulence networks in bacteria.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Group A Streptococcus (GAS) is a human pathogen that causes high morbidity and mortality. GAS lacks a gene encoding tyrosine kinase but contains one encoding tyrosine phosphatase (SP‐PTP). Thus, GAS is thought to lack tyrosine phosphorylation, and the physiological significance of SP‐PTP is, therefore, questionable. Here, we demonstrate that SP‐PTP possesses dual phosphatase specificity for Tyr‐ and Ser/Thr‐phosphorylated GAS proteins, such as Ser/Thr kinase (SP‐STK) and the SP‐STK‐phosphorylated CovR and WalR proteins. Phenotypic analysis of GAS mutants lacking SP‐PTP revealed that the phosphatase activity per se positively regulates growth, cell division and the ability to adhere to and invade host cells. Furthermore, A549 human lung cells infected with GAS mutants lacking SP‐PTP displayed increased Ser‐/Thr‐/Tyr‐phosphorylation. SP‐PTP also differentially regulates the expression of ~50% of the total GAS genes, including several virulence genes potentially through the two‐component regulators, CovR, WalR and PTS/HPr regulation of Mga. Although these mutants exhibit attenuated virulence, a GAS mutant overexpressing SP‐PTP is hypervirulent. Our study provides the first definitive evidence for the presence and importance of Tyr‐phosphorylation in GAS and the relevance of SP‐PTP as an important therapeutic target.  相似文献   

19.
20.
Group A streptococci (GAS) specifically attach to and internalize into human epithelial host cells. In some GAS isolates, fibronectin-binding proteins were identified as being responsible for these virulence traits. In the present study, the previously identified global negative regulator Nra was shown to control the binding of soluble fibronectin probably via regulation of protein F2 and/or SfbII expression in the serotype M49 strain 591. According to results from a conventional invasion assay based on the recovery of viable intracellular bacteria, the increased fibronectin binding did not affect bacterial adherence to HEp-2 epithelial cells, but was associated with a reduction in the internalization rates. However, when examined by confocal and electron microscopy techniques, the nra-mutant bacteria were shown to exhibit higher adherence and internalization rates than the corresponding wild type. The mutant bacteria escaped from the phagocytic vacuoles much faster, promoting consistent morphological changes which resulted in severe host cell damage. The apoptotic and lytic processes observed in nra-mutant infected host cells were correlated with an increased expression of the genes encoding superantigen SpeA, the cysteine protease SpeB, and streptolysin S in the nra-mutant bacteria. Adherence and internalization rates of a nra/speB-double mutant at wild-type levels indicated that the altered speB expression in the nra mutant contributed to the observed changes in both processes. The Nra-dependent effects on bacterial virulence were confined to infections carried out with stationary growth phase bacteria. In conclusion, the obtained results demonstrated that the global GAS regulator Nra modulates virulence genes, which are involved in host cell damage. Thus, by helping to achieve a critical balance of virulence factor expression that avoids the injury of target cells, Nra may facilitate GAS persistence in a safe intracellular niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号