首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designed armadillo repeat proteins (dArmRPs) were developed to create a modular peptide binding technology where each of the structural repeats binds two residues of the target peptide. An essential prerequisite for such a technology is a dArmRP geometry that matches the peptide bond length. To this end, we determined a large set (n = 27) of dArmRP X-ray structures, of which 12 were previously unpublished, to calculate curvature parameters that define their geometry. Our analysis shows that consensus dArmRPs exhibit curvatures close to the optimal range for modular peptide recognition. Binding of peptide ligands can induce a curvature within the desired range, as confirmed by single-molecule FRET experiments in solution. On the other hand, computationally designed ArmRPs, where side chains have been chosen with the intention to optimally fit into a geometrically optimized backbone, turned out to be more divergent in reality, and thus not suitable for continuous peptide binding. Furthermore, we show that the formation of a crystal lattice can induce small but significant deviations from the curvature adopted in solution, which can interfere with the evaluation of repeat protein scaffolds when high accuracy is required. This study corroborates the suitability of consensus dArmRPs as a scaffold for the development of modular peptide binders.  相似文献   

2.
A multidisciplinary approach based on molecular dynamics (MD) simulations using homology models, NMR spectroscopy, and a variety of biophysical techniques was used to efficiently improve the thermodynamic stability of armadillo repeat proteins (ArmRPs). ArmRPs can form the basis of modular peptide recognition and the ArmRP version on which synthetic libraries are based must be as stable as possible. The 42-residue internal Arm repeats had been designed previously using a sequence-consensus method. Heteronuclear NMR revealed unfavorable interactions present at neutral but absent at high pH. Two lysines per repeat were involved in repulsive interactions, and stability was increased by mutating both to glutamine. Five point mutations in the capping repeats were suggested by the analysis of positional fluctuations and configurational entropy along multiple MD simulations. The most stabilizing single C-cap mutation Q240L was inferred from explicit solvent MD simulations, in which water penetrated the ArmRP. All mutants were characterized by temperature- and denaturant-unfolding studies and the improved mutants were established as monomeric species with cooperative folding and increased stability against heat and denaturant. Importantly, the mutations tested resulted in a cumulative decrease of flexibility of the folded state in silico and a cumulative increase of thermodynamic stability in vitro. The final construct has a melting temperature of about 85°C, 14.5° higher than the starting sequence. This work indicates that in silico studies in combination with heteronuclear NMR and other biophysical tools may provide a basis for successfully selecting mutations that rapidly improve biophysical properties of the target proteins.  相似文献   

3.
Capping motifs are found to flank most β‐strand‐containing repeat proteins. To better understand the roles of these capping motifs in organizing structure and stability, we carried out folding and solution NMR studies on the leucine‐rich repeat (LRR) domain of PP32, which is composed of five tandem LRR, capped by α‐helical and β‐hairpin motifs on the N‐ and C‐termini. We were able to purify PP32 constructs lacking either cap and containing destabilizing substitutions. Removing the C‐cap results in complete unfolding of PP32. Removing the N‐cap has a much less severe effect, decreasing stability but retaining much of its secondary structure. In contrast, the dynamics and tertiary structure of the first two repeats are significantly perturbed, based on 1H‐15N relaxation studies, chemical shift perturbations, and residual dipolar couplings. However, more distal repeats (3 to C‐cap) retain their native tertiary structure. In this regard, the N‐cap drives the folding of adjacent repeats from what appears to be a molten‐globule‐like state. This interpretation is supported by extensive analysis using core packing substitutions in the full‐length and N‐cap‐truncated PP32. This work highlights the importance of caps to the stability and structural integrity of β‐strand‐containing LRR proteins, and emphasizes the different contributions of the N‐ and C‐terminal caps.  相似文献   

4.
Repeat proteins have recently emerged as especially well‐suited alternative binding scaffolds due to their modular architecture and biophysical properties. Here we present the design of a scaffold based on the consensus sequence of the leucine rich repeat (LRR) domain of the NOD family of cytoplasmic innate immune system receptors. Consensus sequence design has emerged as a protein design tool to create de novo proteins that capture sequence‐structure relationships and interactions present in nature. The multiple sequence alignment of 311 individual LRRs, which are the putative ligand‐recognition domain in NOD proteins, resulted in a consensus sequence protein containing two internal and N‐ and C‐capping repeats named CLRR2. CLRR2 protein is a stable, monomeric, and cysteine free scaffold that without any affinity maturation displays micromolar binding to muramyl dipeptide, a bacterial cell wall fragment. To our knowledge, this is the first report of direct interaction of a NOD LRR with a physiologically relevant ligand.  相似文献   

5.
Designed armadillo repeat proteins (dArmRP) are α‐helical solenoid repeat proteins with an extended peptide binding groove that were engineered to develop a generic modular technology for peptide recognition. In this context, the term “peptide” not only denotes a short unstructured chain of amino acids, but also an unstructured region of a protein, as they occur in termini, loops, or linkers between folded domains. Here we report two crystal structures of dArmRPs, in complex with peptides fused either to the N‐terminus of Green Fluorescent Protein or to the C‐terminus of a phage lambda protein D. These structures demonstrate that dArmRPs bind unfolded peptides in the intended conformation also when they constitute unstructured parts of folded proteins, which greatly expands possible applications of the dArmRP technology. Nonetheless, the structures do not fully reflect the binding behavior in solution, that is, some binding sites remain unoccupied in the crystal and even unexpected peptide residues appear to be bound. We show how these differences can be explained by restrictions of the crystal lattice or the composition of the crystallization solution. This illustrates that crystal structures have to be interpreted with caution when protein–peptide interactions are characterized, and should always be correlated with measurements in solution.  相似文献   

6.
Designed armadillo repeat proteins (dArmRP) are promising modular proteins for the engineering of binding molecules that recognize extended polypeptide chains. We determined the structure of a dArmRP containing five internal repeats and 3rd generation capping repeats in three different states by X‐ray crystallography: without N‐terminal His6‐tag and in the presence of calcium (YM5A/Ca2+), without N‐terminal His6‐tag and in the absence of calcium (YM5A), and with N‐terminal His6‐tag and in the presence of calcium (His‐YM5A/Ca2+). All structures show different quaternary structures and superhelical parameters. His‐YM5A/Ca2+ forms a crystallographic dimer, which is bridged by the His6‐tag, YM5A/Ca2+ forms a domain‐swapped tetramer, and only in the absence of calcium and the His6‐tag, YM5A forms a monomer. The changes of superhelical parameters are a consequence of calcium binding, because calcium ions interact with negatively charged residues, which can also participate in the modulation of helix dipole moments between adjacent repeats. These observations are important for further optimizations of dArmRPs and provide a general illustration of how construct design and crystallization conditions can influence the exact structure of the investigated protein.  相似文献   

7.
Armadillo repeat proteins are abundant eukaryotic proteins involved in several cellular processes, including signaling, transport, and cytoskeletal regulation. They are characterized by an armadillo domain, composed of tandem armadillo repeats of approximately 42 amino acids, which mediates interactions with peptides or parts of proteins in extended conformation. The conserved binding mode of the peptide in extended form, observed for different targets, makes armadillo repeat proteins attractive candidates for the generation of modular peptide-binding scaffolds. Taking advantage of the large number of repeat sequences available, a consensus-based approach combined with a force field-based optimization of the hydrophobic core was used to derive soluble, highly expressed, stable, monomeric designed proteins with improved characteristics compared to natural armadillo proteins. These sequences constitute the starting point for the generation of designed armadillo repeat protein libraries for the selection of peptide binders, exploiting their modular structure and their conserved binding mode.  相似文献   

8.
We report on crystal structures of a carbohydrate recognition domain (CRD) of human C‐type lectin receptor blood dendritic cell antigen‐2 (BDCA2). Three different crystal forms were obtained at 1.8–2.3 Å resolution. In all three, the CRD has a basic C‐type lectin fold, but a long loop extends away from the core domain to form a domain‐swapped dimer. The structures of the dimers from the three different crystal forms superimpose well, indicating that domain swapping and dimer formation are energetically stable. The structure of the dimer is compared with other domain‐swapped proteins, and a possible regulation mechanism of BDCA2 is discussed. Proteins 2014; 82:1512–1518. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Repeat proteins are constructed from a linear array of modular units, giving rise to an overall topology lacking long-range interactions. This suggests that stabilizing repeat modules based on consensus information might be added to a repeat protein domain, allowing it to be extended without altering its overall topology. Here we add consensus modules the ankyrin repeat domain from the Drosophila Notch receptor to investigate the structural tolerance to these modules, the relative thermodynamic stability of these hybrid proteins, and how alterations in the energy landscape influence folding kinetics. Insertions of consensus modules between repeats five and six of the Notch ankyrin domain have little effect on the far and near-UV CD spectra, indicating that neither secondary nor tertiary structure is dramatically altered. Furthermore, stable structure is maintained at increased denaturant concentrations in the polypeptides containing the consensus repeats, indicating that the consensus modules are capable of stabilizing much of the domain. However, insertion of the consensus repeats appears to disrupt cooperativity, producing a two-stage (three-state) unfolding transition in which the C-terminal repeats unfold at moderate urea concentrations. Removing the C-terminal repeats (Notch ankyrin repeats six and seven) restores equilibrium two-state folding and demonstrates that the high stability of the consensus repeats is propagated into the N-terminal, naturally occurring Notch ankyrin repeats. This stability increase greatly increases the folding rate, and suggests that the transition state ensemble may be repositioned in the chimeric consensus-stabilized proteins in response to local stability.  相似文献   

10.
The conserved armadillo repeat (ARM) domain of adenomatous polyposis coli (APC) protein plays an important role in the recognition of its binding partners. In this study, we report the crystal structure of APC-ARM (residues 407-775), which was determined to 2.9 Å resolution. Our structure shows that the seven armadillo repeats of APC-ARM fold together into a compact domain, with Arm2 and Arm5 presenting some deviations from canonical armadillo repeats. There is a positively charged groove on the surface of APC-ARM, which might be the recognition site for APC-binding partners. Comparison of this structure with our previously reported structure of APC (407-751), together with normal mode analysis, reveals that the APC-ARM domain possesses a limited intrinsic flexibility. We propose that this intrinsic flexibility might be an inherent property of ARM domains in general.  相似文献   

11.
Several binding scaffolds that are not based on immunoglobulins have been designed as alternatives to traditional monoclonal antibodies. Many of them have been developed to bind to folded proteins, yet cellular networks for signaling and protein trafficking often depend on binding to unfolded regions of proteins. This type of binding can thus be well described as a peptide–protein interaction. In this review, we compare different peptide-binding scaffolds, highlighting that armadillo repeat proteins (ArmRP) offer an attractive modular system, as they bind a stretch of extended peptide in a repeat-wise manner. Instead of generating each new binding molecule by an independent selection, preselected repeats – each complementary to a piece of the target peptide – could be designed and assembled on demand into a new protein, which then binds the prescribed complete peptide. Stacked armadillo repeats (ArmR), each typically consisting of 42 amino acids arranged in three α-helices, build an elongated superhelical structure which enables binding of peptides in extended conformation. A consensus-based design approach, complemented with molecular dynamics simulations and rational engineering, resulted in well-expressed monomeric proteins with high stability. Peptide binders were selected and several structures were determined, forming the basis for the future development of modular peptide-binding scaffolds.  相似文献   

12.
Repeat proteins are tandem arrays of a small structural motif, in which tertiary structure is stabilized by interactions within a repeat and between neighboring repeats. Several studies have shown that this modular structure is manifest in modular thermodynamic properties. Specifically, the global stability of a repeat protein can be described by simple linear models, considering only two parameters: the stability of the individual repeated units (H) and the coupling interaction between the units (J). If the repeat units are identical, single values of H and J, together with the number of repeated units, is sufficient to completely describe the thermodynamic behavior of any protein within a series. In this work, we demonstrate how the global stability of a repeat protein can be changed, in a predictable fashion, by modifying only the H parameter. Taking a previously characterized series of consensus tetratricopeptide repeats (TPR) (CTPRa) proteins, we introduced mutations into the basic repeating unit, such that the stability of the individual repeat unit was increased, but its interaction with neighboring units was unchanged. In other words, we increased H but kept J constant. We demonstrated that the denaturation curves for a series of such repeat proteins can be fit and additional curves can be predicted by the one-dimensional Ising model in which only H has changed from the original fit for the CTPRa series. Our results show that we can significantly increase the stability of a repeat protein by rationally increasing the stability of the units (H), whereas the interaction between repeats (J) remains unchanged.  相似文献   

13.
The full or partial unfolding of proteins is widely believed to play an essential role in three‐dimensional domain swapping. However, there is little research that has rigorously evaluated the association between domain swapping and protein folding/unfolding. Here, we examined a kinetic model in which domain swapping occurred via the denatured state produced by the complete unfolding of proteins. The relationships between swapping kinetics and folding/unfolding thermodynamics were established, which were further adopted as criteria to show that the proposed mechanism dominates in three representative proteins: Cyanovirin‐N (CV‐N), the C‐terminal domain of SARS‐CoV main protease (Mpro‐C), and a single mutant of oxidized thioredoxin (Trx_W28Aox).  相似文献   

14.
Polcalcins are small EF‐hand proteins believed to assist in regulating pollen‐tube growth. Phl p 7, from timothy grass (Phleum pratense), crystallizes as a domain‐swapped dimer at low pH. This study describes the solution structures of the recombinant protein in buffered saline at pH 6.0, containing either 5.0 mM EDTA, 5.0 mM Mg2+, or 100 μM Ca2+. Phl p 7 is monomeric in all three ligation states. In the apo‐form, both EF‐hand motifs reside in the closed conformation, with roughly antiparallel N‐ and C‐terminal helical segments. In 5.0 mM Mg2+, the divalent ion is bound by EF‐hand 2, perturbing interhelical angles and imposing more regular helical structure. The structure of Ca2+‐bound Phl p 7 resembles that previously reported for Bet v 4—likewise exposing apolar surface to the solvent. Occluded in the apo‐ and Mg2+‐bound forms, this surface presumably provides the docking site for Phl p 7 targets. Unlike Bet v 4, EF‐hand 2 in Phl p 7 includes five potential anionic ligands, due to replacement of the consensus serine residue at –x (residue 55 in Phl p 7) with aspartate. In the Phl p 7 crystal structure, D55 functions as a helix cap for helix D. In solution, however, D55 apparently serves as a ligand to the bound Ca2+. When Mg2+ resides in site 2, the D55 carboxylate withdraws to a distance consistent with a role as an outer‐sphere ligand. 15N relaxation data, collected at 600 MHz, indicate that backbone mobility is limited in all three ligation states. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Tetratricopeptide repeats (TPRs) are a class of all alpha-helical repeat proteins that are comprised of 34-aa helix-turn-helix motifs. These stack together to form nonglobular structures that are stabilized by short-range interactions from residues close in primary sequence. Unlike globular proteins, they have few, if any, long-range nonlocal stabilizing interactions. Several studies on designed TPR proteins have shown that this modular structure is reflected in their folding, that is, modular multistate folding is observed as opposed to two-state folding. Here we show that TPR multistate folding can be suppressed to approximate two-state folding through modulation of intrinsic stability or extrinsic environmental variables. This modulation was investigated by comparing the thermodynamic unfolding under differing buffer regimes of two distinct series of consensus-designed TPR proteins, which possess different intrinsic stabilities. A total of nine proteins of differing sizes and differing consensus TPR motifs were each thermally and chemically denatured and their unfolding monitored using differential scanning calorimetry (DSC) and CD/fluorescence, respectively. Analyses of both the DSC and chemical denaturation data show that reducing the total stability of each protein and repeat units leads to observable two-state unfolding. These data highlight the intimate link between global and intrinsic repeat stability that governs whether folding proceeds by an observably two-state mechanism, or whether partial unfolding yields stable intermediate structures which retain sufficient stability to be populated at equilibrium.  相似文献   

16.
Terminal deletions of units from α‐helical repeat proteins have provided insight into the physical origins of their cooperativity. To test if the same principles governing cooperativity apply to β‐sheet‐containing repeat proteins, we have created a series of C‐terminal deletion constructs from a large leucine‐rich repeat (LRR) protein, YopM. We have examined the structure and stability of the resulting deletion constructs by a combination of solution spectroscopy, equilibrium denaturation studies, and limited proteolysis. Surprisingly, a high degree of nonuniformity was found in the stability distribution of YopM. Unlike previously studied repeat proteins, we identified several key LRR that on deletion disrupt nearby structure, at distances as far away as up to three repeats, in YopM. This partial unfolding model is supported by limited proteolysis studies and by point substitution in repeats predicted to be disordered as a result of deletion of adjacent repeats. We show that key internal‐ and terminal‐caps must be present to maintain the structural integrity in adjacent regions (roughly four LRRs long) of decreased stability. The finding that full‐length YopM maintains a high level of cooperativity in equilibrium unfolding underscores the importance of interfacial interactions in stabilizing locally unstable regions of structure.  相似文献   

17.
Structure of the armadillo repeat domain of plakophilin 1   总被引:2,自引:0,他引:2  
The p120ctn subfamily of armadillo domain proteins has roles in modulating intercellular adhesion by cadherin-containing junctions. We have determined the crystal structure of the arm repeat domain from plakophilin-1 (PKP1), a member of the p120ctn subfamily that is found in desmosomes. The structure reveals that the domain has nine instead of the expected ten arm repeats. A sequence predicted to be an arm repeat is instead a large insert which serves as a wedge that produces a significant bend in the overall domain structure. Structure-based sequence alignments indicate that the nine repeats and large insert are common to this subfamily of armadillo proteins. A prominent basic patch on the surface of the protein may serve as a binding site for partners of these proteins.  相似文献   

18.
Three-dimensional (3D) domain swapping creates a bond between two or more protein molecules as they exchange their identical domains. Since the term '3D domain swapping' was first used to describe the dimeric structure of diphtheria toxin, the database of domain-swapped proteins has greatly expanded. Analyses of the now about 40 structurally characterized cases of domain-swapped proteins reveal that most swapped domains are at either the N or C terminus and that the swapped domains are diverse in their primary and secondary structures. In addition to tabulating domain-swapped proteins, we describe in detail several examples of 3D domain swapping which show the swapping of more than one domain in a protein, the structural evidence for 3D domain swapping in amyloid proteins, and the flexibility of hinge loops. We also discuss the physiological relevance of 3D domain swapping and a possible mechanism for 3D domain swapping. The present state of knowledge leads us to suggest that 3D domain swapping can occur under appropriate conditions in any protein with an unconstrained terminus. As domains continue to swap, this review attempts not only a summary of the known domain-swapped proteins, but also a framework for understanding future findings of 3D domain swapping.  相似文献   

19.
Three-dimensional domain swapping occurs when two or more identical proteins exchange identical parts of their structure to generate an oligomeric unit. It affects proteins with diverse sequences and structures, and is expected to play important roles in evolution, functional regulation and even conformational diseases. Here, we search for traces of domain swapping in the protein sequence, by means of algorithms that predict the structure and stability of proteins using database-derived potentials. Regions whose sequences are not optimal with regard to the stability of the native structure, or showing marked intrinsic preferences for non-native conformations in absence of tertiary interactions are detected in most domain-swapping proteins. These regions are often located in areas crucial in the swapping process and are likely to influence it on a kinetic or thermodynamic level. In addition, cation-pi interactions are frequently observed to zip up the edges of the interface between intertwined chains or to involve hinge loop residues, thereby modulating stability. We end by proposing a set of mutations altering the swapping propensities, whose experimental characterization would contribute to refine our in silico derived hypotheses.  相似文献   

20.
Topological characteristics of helical repeat proteins.   总被引:23,自引:0,他引:23  
The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem repeats of an alpha-helical structural unit, creating extended superhelical structures that are ideally suited to create a protein recognition interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号