首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins bound to a glutathione-S-transferase-p21Cip1 affinity column were separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified using tandem mass spectrometry. Capillary liquid chromatography coupled to microelectrospray tandem mass spectrometry (capLC-microESI MS/MS) in an ion trap allowed identification of the proteins present in the gel bands. Of eleven bands analyzed, fifty-three proteins were identified. More than one hundred tryptic peptides were detected on-line, automatically fragmented and used for protein characterization in databases. Samples were also analyzed by off-line nanospray and matrix-assisted laser desorption/ionization mass spectrometry. CapLC-microESI MS/MS was the most efficient technique for the analysis of these protein mixtures.  相似文献   

2.
A number of high resolution two-dimensional electrophoresis (2-DE) reference maps for bovine tissues and biological fluids have been determined for animals in basal state. Among the 1863 distinct protein features detected in samples of liver, kidney, muscle, plasma and red blood cells, 509 species were identified and associated to 209 different genes. Difficulties in the identification were related to the poorly characterized Bos taurus genome and were solved by a combined matrix-assisted laser desorption/ionisation-mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry approach. The experimental output allowed us to establish a 2-DE database accessible through the World Wide Web network at the URL address (http://www.iabbam.na.cnr.it/Biochem). These reference maps may serve as a tool in future veterinary medical studies aimed at the evaluation of changes in protein repertoire for altered animal physiological conditions and infectious diseases, to the definition of molecular markers for novel diagnostic kits and vaccines, as well as the characterization of protein modifications in bovine materials following technological processes used in the food industry.  相似文献   

3.
López JL  Marina A  Alvarez G  Vázquez J 《Proteomics》2002,2(12):1658-1665
In this work, a novel approach based on proteomics is applied for the analysis of the three European marine mussel species: Mytilus edulis (ME), Mytilus galloprovincialis (MG) and Mytilus trossulus (MT), which are of interest in biotechnology and food industry. The proteomes of these species are poorly described in databases, are difficult to diagnose, and have a controversial taxonomy, To characterise species-specific peptides, we compared 51 matrix-assisted laser desorption/ioization-time of flight peptide mass maps generated from 6 random selected prominent spots derived from the two-dimensional electrophoresis analysis of foot protein extracts from several individuals. Minor species-specific differences in the peptide maps were detected in only one of the spots, corresponding to tropomyosin. Two peptides were unique to ME and MG individuals, whereas another peptide was present only in MT individuals. The sequence of these peptides was characterised by, nanoelectrospray ionization-ion trap (nanoESI-IT) tandem mass spectrometry (MS/MS) analysis followed by database searching and de novo sequence interpretation. We detected a single T to D amino acid substitution in MT tropomyosin. Unambiguous and highly-specific species identification was then demonstrated by analysing peptide extracts from tropomyosin spots by micro high-performande liquid chromatography (microHPL) ESI-IT mass spectrometry using the selected ion monitoring configuration, focused on these peptides, in continuous MS/MS operation. Our results suggest that proteomics may be successfully applied for the identification of species whose proteome is not present in databases.  相似文献   

4.
The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC) are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.  相似文献   

5.
The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC) are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.  相似文献   

6.
7.
Electron capture dissociation (ECD) represents one of the most recent and significant advancements in tandem mass spectrometry (MS/MS) for the identification and characterization of polypeptides. In comparison with the conventional fragmentation techniques, such as collisionally activated dissociation (CAD), ECD provides more extensive sequence fragments, while allowing the labile modifications to remain intact during backbone fragmentation—an important attribute for characterizing post-translational modifications. Herein, we present a brief overview of the ECD technique as well as selected applications in characterization of peptides and proteins. Case studies including characterization and localization of amino acid glycosylation, methionine oxidation, acylation, and “top–down” protein mass spectrometry using ECD will be presented. A recent technique, coined as electron transfer dissociation (ETD), will be also discussed briefly.  相似文献   

8.
The large body of knowledge about Escherichia coli makes it a useful model organism for the expression of heterologous proteins. Proteomic studies have helped to elucidate the complex cellular responses of E. coli and facilitated its use in a variety of biotechnology applications. Knowledge of basic cellular processes provides the means for better control of heterologous protein expression. Beyond such important applications, E. coli is an ideal organism for testing new analytical technologies because of the extensive knowledge base available about the organism. For example, improved technology for characterization of unknown proteins using mass spectrometry has made two-dimensional electrophoresis (2DE) studies more useful and more rewarding, and much of the initial testing of novel protocols is based on well-studied samples derived from E. coli. These techniques have facilitated the construction of more accurate 2DE maps. In this review, we present work that led to the 2DE databases, including a new map based on tandem time-of-flight (TOF) mass spectrometry (MS); describe cellular responses relevant to biotechnology applications; and discuss some emerging proteomic techniques.  相似文献   

9.
Common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption. Proteomic studies in legumes have increased significantly in the last years but few studies have been performed to date in P. vulgaris. We report here a proteomic analysis of bean seeds by two-dimensional electrophoresis (2-DE). Three different protein extraction methods (TCA-acetone, phenol and the commercial clean-up kit) were used taking into account that the extractome can have a determinant impact on the level of quality of downstream protein separation and identification. To demonstrate the quality of the 2-DE analysis, a selection of 50 gel spots was used in protein identification by mass spectrometry (MALDI-TOF MS and MALDI-TOF/TOF). The results showed that a considerable proportion of spots (70%) were identified in spite of incomplete genome/protein databases for bean and other legume species. Most identified proteins corresponded to storage protein, carbohydrate metabolism, defense and stress response, including proteins highly abundant in the seed of P. vulgaris such as the phaseolin, the phytohemagglutinin and the lectin-related α-amylase inhibitor.  相似文献   

10.

Background  

Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.  相似文献   

11.
Mass spectrometry (MS) coupled to affinity purification is a powerful approach for identifying protein-protein interactions and for mapping post-translational modifications. Prior to MS analysis, affinity-purified proteins are typically separated by gel electrophoresis, visualized with a protein stain, excised, and subjected to in-gel digestion. An inherent limitation of this series of steps is the loss of protein sample that occurs during gel processing. Although methods employing in-solution digestion have been reported, they generally suffer from poor reaction kinetics. In the present study, we demonstrate an application of a microfluidic processing device, termed the Proteomic Reactor, for enzymatic digestion of affinity-purified proteins for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Use of the Proteomic Reactor enabled the identification of numerous ubiquitinated proteins in a human cell line expressing reduced amounts of the ubiquitin-dependent chaperone, valosin-containing protein (VCP). The Proteomic Reactor is a novel technology that facilitates the analysis of affinity-purified proteins and has the potential to aid future biological studies.  相似文献   

12.
Strategic proteome analysis of Candida magnoliae with an unsequenced genome   总被引:2,自引:0,他引:2  
Kim HJ  Lee DY  Lee DH  Park YC  Kweon DH  Ryu YW  Seo JH 《Proteomics》2004,4(11):3588-3599
Erythritol is a noncariogenic, low calorie sweetener. It is safe for people with diabetes and obese people. Candida magnoliae is an industrially important organism because of its ability to produce erythritol as a major product. The genome of C. magnoliae has not been sequenced yet, limiting the available proteome database. Therefore, systematic approaches were employed to construct the proteome map of C. magnoliae. Proteomic analysis with systematic approaches is based on two-dimensional electrophoresis, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), tandem mass spectrometry (MS/MS) and database interrogation. First, 24 spots were analyzed using peptide mass fingerprinting along with MALDI-TOF MS with high mass accuracy. Only four spots were reliably identified as carbonyl reductase and its isoforms. The reason for low sequence coverage seemed to be that these identification strategies were based on the presence of the protein database obtained from the publicly accessible genome database and the availability of cross-species protein identification. MS/MS (MS/MS ion search and de novo sequencing) in combination with similarity searches allowed successful identification of 39 spots. Several proteins including transaldolase identified by MS/MS ion searches were further confirmed by partial sequences from the expressed sequence tag database. In this study, 51 protein spots were analyzed and then potentially identified. The identified proteins were involved in glycolysis, stress response, other essential metabolisms and cell structures.  相似文献   

13.
The dynamic range of plasma protein abundance, ranging from milligrams to picograms per milliliter, makes characterization of this proteome nearly impossible with current analytical methods. Plasma preprocessing by high-abundance protein depletion may concomitantly remove important diagnostic information. This article describes an original chromatographic procedure to isolate proteins bound to human serum albumin (HSA). Using HSA as an “affinity agent”, we significantly improved the detection and identification of HSA ligands by two-dimensional liquid chromatography tandem mass spectrometry (2D LC–MS/MS). Some of the characterized species were not previously reported in published blood databases. Albumin-binding proteins may be classified as belonging to several putative functional categories and span a wide variety of predicted physiological functions.  相似文献   

14.
Protein identification using 2D-LC-MS/MS   总被引:3,自引:0,他引:3  
Multidimensional liquid chromatography techniques have been coupled to tandem mass spectrometry to provide a robust method to identify proteins in complex mixtures. Data acquisition is interfaced directly with search algorithms for identification through cross-correlation with databases. This review describes the most recent advances in methodologies for protein identification by mass spectrometry and describes the limitations of the application of the technologies.  相似文献   

15.
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories.

Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed.

Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.  相似文献   


16.
At present, mass spectrometry provides a rapid and sensitive means for making conclusive protein identifications from complex mixtures. Sequencing tryptic peptides derived from proteolyzed protein samples, also known as the "Bottom Up" approach, is the mass spectrometric gold standard for identifying unknowns. An alternative technology, "Top Down" characterization, is emerging as a viable option for protein identifications, which involves analyzing the intact unknowns for accurate mass and amino acid sequence tags. In this paper, both characterization methods were employed to more comprehensively differentiate two early-eluting peaks in a process-scale size-exclusion chromatography (SEC) step for a recombinant, immunoglobulin gamma-1 (IgG-1) fusion protein. The contents of each SEC peak were enzymatically digested, and the resulting peptides were mapped using reversed-phase (RP) HPLC-ion trap MS. Many low-level UV signals were observed among the fusion protein-related peptide peaks. These unknowns were collected, concentrated, and analyzed using nanoelectrospray (nanoES) collision-induced dissociation (CID) tandem (MS/MS) mass spectrometry for identification. The peptide sequencing experiments resulted in the identification of twenty host cell-related proteins. Following peptide mapping, the contents of the two SEC peaks were protein mass profiled using on-line RP HPLC coupled to a high-resolution, quadrupole time-of-flight (Qq/TOF) MS. Unknown proteins were also collected, concentrated, and dissociated using nanoES CID MS/MS. Intact protein CID experiments and accurate molecular weight information allowed for the identification of three full length host cell-derived proteins and numerous clips from these and additional proteins. The accurate molecular weight values allowed for the assignment of N- and C-terminal processing, which is difficult to conclusively access from peptide mapping data. The peptide-mapping experiments proved to be far more effective for making protein identifications from complex mixtures, whereas the protein mass profiling was useful for assessing modifications and distinguishing protein clips from full length species.  相似文献   

17.
The characterization by de novo peptide sequencing of the different protein nucleoside diphosphate kinase B (NDK B) from all the commercial hakes and grenadiers belonging to the family Merlucciidae is reported. A classical proteomics approach, consisting of two-dimmensional gel electrophoresis, tryptic in-gel digestion of the excised spots, MALDI-TOF MS, LC-MS/MS, and nanoESI-MS/MS analyses, was followed for the purification and characterization of the different isoforms of the NDK B. Fragmentation spectra were used for de novo peptide sequence. A high degree of homology was found between the sequences of all the species studied and the NDK B sequence from Gillichthys mirabilis, which is accessible in the protein databases. Particular attention was paid to the differential characterization of species-specific peptides that could be used for fish authentication purposes. These findings allowed us to propose a rapid and effective classification method, based in the detection of these biomarker peptides using the selective ion reaction monitoring (SIRM) scan mode in mass spectrometry.  相似文献   

18.
Proteomics and a future generation of plant molecular biologists   总被引:4,自引:0,他引:4  
Proteomic methods are required for the study of many different aspects of plant function. Important issues in proteomics include the molecular complexity of proteins, given that there are hundreds of thousands of chemically and physically distinct proteins in plants, and the context of protein functions with respect to both genomes and the environment. Available genomic and gene sequences greatly simplify the identification of proteins using improved techniques of mass spectrometry. This improved capability has led to much discussion on proteomes, and some experimentation using proteomic methodologies aimed at modest numbers of proteins. The scale of proteomics is open, for the number of proteins and genes considered at any one time is as dependent on the nature of the scientific question posed as on technical resources and capabilities. We know just enough about plant proteomes to imagine the breathtaking scope of our ignorance. There are tremendous opportunities for new molecular biologists to define the nature of the protein machines that transduce genetic and environmental information, and transform simple energy and matter, to give plants.  相似文献   

19.
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position, as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.  相似文献   

20.

Background  

Protein identification based on mass spectrometry (MS) has previously been performed using peptide mass fingerprinting (PMF) or tandem MS (MS/MS) database searching. However, these methods cannot identify proteins that are not already listed in existing databases. Moreover, the alternative approach of de novo sequencing requires costly equipment and the interpretation of complex MS/MS spectra. Thus, there is a need for novel high-throughput protein-identification methods that are independent of existing predefined protein databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号