首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the determinants of protein hydrogen exchange (HX), HX rates of most of the backbone amide hydrogens of Staphylococcal nuclease were measured by NMR methods. A modified analysis was used to improve accuracy for the faster hydrogens. HX rates of both near surface and well buried hydrogens are spread over more than 7 orders of magnitude. These results were compared with previous hypotheses for HX rate determination. Contrary to a common assumption, proximity to the surface of the native protein does not usually produce fast exchange. The slow HX rates for unprotected surface hydrogens are not well explained by local electrostatic field. The ability of buried hydrogens to exchange is not explained by a solvent penetration mechanism. The exchange rates of structurally protected hydrogens are not well predicted by algorithms that depend only on local interactions or only on transient unfolding reactions. These observations identify some of the present difficulties of HX rate prediction and suggest the need for returning to a detailed hydrogen by hydrogen analysis to examine the bases of structure-rate relationships, as described in the companion paper (Skinner et al., Protein Sci 2012;21:996-1005).  相似文献   

2.
The exchange of a large number of amide hydrogens in oxidized equine cytochrome c was measured by NMR and compared with structural parameters. Hydrogens known to exchange through local structural fluctuations and through larger unfolding reactions were separately considered. All hydrogens protected from exchange by factors greater than 10(3) are in defined H-bonds, and almost all H-bonded hydrogens including those at the protein surface were measured to exchange slowly. H-exchange rates do not correlate with H-bond strength (length) or crystallographic B factors. It appears that the transient structural fluctuation necessary to bring an exchangeable hydrogen into H-bonding contact with the H-exchange catalyst (OH(-)-ion) involves a fairly large separation of the H-bond donor and acceptor, several angstroms at least, and therefore depends on the relative resistance to distortion of immediately neighboring structure. Accordingly, H-exchange by way of local fluctuational pathways tends to be very slow for hydrogens that are neighbored by tightly anchored structure and for hydrogens that are well buried. The slowing of buried hydrogens may also reflect the need for additional motions that allow solvent access once the protecting H-bond is separated, although it is noteworthy that burial in a protein like cytochrome c does not exceed 4 angstroms. When local fluctuational pathways are very slow, exchange can become dominated by a different category of larger, cooperative, segmental unfolding reactions reaching up to global unfolding.  相似文献   

3.
To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (ΔGHX) and the kinetic unfolding and refolding rates (kop and kcl) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 × 10− 6 s− 1 and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the β-barrel, including mutually H-bonding residues in the β4 and β5 strands, a part of the β3 strand that H-bonds to β5, and residues at the N-terminus of the α2 helix that is capped by β5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native α2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded β1-β2-β3 meander, completing the native β-barrel, plus an adjacent part of the α1 helix. A final foldon (red) includes residues on remaining segments that are distant in sequence but nearly adjacent in the native protein. Although the structure of the partially unfolded forms closely mimics the native organization, four residues indicate the presence of some nonnative misfolding interactions. Because the unfolding parameters of many other residues are not determined, it seems likely that the concerted foldon units are more extensive than is shown by the 34 residues actually observed.  相似文献   

4.
Protein hydrogen exchange is generally believed to register some aspects of internal protein dynamics, but the kind of motion at work is not clear. Experiments are being done to identify the determinants of protein hydrogen exchange and to distinguish between local unfolding and accessibility-penetration mechanisms. Results with small molecules, polynucleotides, and proteins demonstrate that solvent accessibility is by no means sufficient for fast exchange. H-exchange slowing is quite generally connected with intramolecular H-bonding, and the exchange process depends pivotally on transient H-bond cleavage. At least in alpha-helical structures, the cooperative aspect of H-bond cleavage must be expressed in local unfolding reactions. Results obtained by use of a difference hydrogen exchange method appear to provide a direct measurement of transient, cooperative, local unfolding reactions in hemoglobin. The reality of these supposed coherent breathing units is being tested by using the difference H-exchange approach to tritium label the units one at a time and then attempting to locate the tritium by fragmenting the protein, separating the fragments, and testing them for label. Early results demonstrate the feasibility of this approach.  相似文献   

5.
Juneja J  Udgaonkar JB 《Biochemistry》2002,41(8):2641-2654
The unfolding of ribonuclease A was studied in 5.2 M guanidine hydrochloride at pH 8 and 10 degrees C using multiple optical probes, native-state hydrogen exchange (HX), and pulse labeling by hydrogen exchange. First, native-state HX studies were used to demonstrate that the protein exists in two slowly interconverting forms under equilibrium native conditions: a predominant exchange-incompetent N form and an alternative ensemble of conformations, N(I), in which some amide hydrogens are fully exposed to exchange. Pulsed HX studies indicated that, during unfolding, the rates of exposure to exchange with solvent protons were similar for all backbone NH probe protons. It is shown that two parallel routes of unfolding are available to the predominant N conformation as soon as it encounters strong unfolding conditions. A fraction of molecules appears to rapidly form N(I) on one route. On the other route an exchange-incompetent intermediate state ensemble, I(U)(2), is formed. The kinetics of unfolding measured by far-UV circular dichroism (CD) were faster than those measured by near-UV CD and intrinsic tyrosine fluorescence of the protein. The logarithms of the rate constants of the unfolding reaction measured by all three optical probes also showed a nonlinear dependence on GdnHCl concentration. All of the data suggest that N(I) and I(U)(2) are nativelike in their secondary and tertiary structures. While N(I) unfolds directly to the fully exchange-competent unfolded state (U), I(U)(2) forms another intermediate I(U)(3) which then unfolds to U. I(U)(3) is devoid of all native alpha-helical secondary structure and has only 30% of the tertiary interactions still intact. Since the rates of global unfolding measured by near-UV CD and fluorescence agree well with the rates of exposure determined for all of the backbone NH probe protons, it appears that the rate-limiting step for the unfolding of RNase A is the dissolution of the entire native tertiary structure and penetration of water into the hydrophobic core.  相似文献   

6.
We develop a statistical mechanical theory for the mechanism of hydrogen exchange in globular proteins. Using the HP lattice model, we explore how the solvent accessibilities of chain monomers vary as proteins fluctuate from their stable native conformations. The model explains why hydrogen exchange appears to involve two mechanisms under different conditions of protein stability; (1) a “global unfolding” mechanism by which all protons exchange at a similar rate, approaching that of the denatured protein, and (2) a “stable-state” mechanism by which protons exchange at rates that can differ by many orders of magnitude. There has been some controversy about the stable-state mechanism: does exchange take place inside the protein by solvent penetration, or outside the protein by the local unfolding of a subregion? The present model indicates that the stable-state mechanism of exchange occurs through an ensemble of conformations, some of which may bear very little resemblance to the native structure. Although most fluctuations are small-amplitude motions involving solvent penetration or local unfolding, other fluctuations (the conformational distant relatives) can involve much larger transient excursions to completely different chain folds.  相似文献   

7.
Experiments were done to study the dynamic structural motions that determine protein hydrogen exchange (HX) behavior. The replacement of a solvent-exposed lysine residue with glycine (Lys8Gly) in a helix of recombinant cytochrome c does not perturb the native structure, but it entropically potentiates main-chain flexibility and thus can promote local distortional motions and large-scale unfolding. The mutation accelerates amide hydrogen exchange of the mutated residue by about 50-fold, neighboring residues in the same helix by less, and residues elsewhere in the protein not at all, except for Leu98, which registers the change in global stability. The pattern of HX changes shows that the coupled structural distortions that dominate exchange can be several residues in extent, but they expose to exchange only one amide NH at a time. This "local fluctuation" mode of hydrogen exchange may be generally recognized by disparate near-neighbor rates and a low dependence on destabilants (denaturant, temperature, pressure). In contrast, concerted unfolding reactions expose multiple neighboring amide NHs with very similar computed protection factors, and they show marked destabilant sensitivity. In both modes, ionic hydrogen exchange catalysts attack from the bulk solvent without diffusing through the protein matrix.  相似文献   

8.
Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.  相似文献   

9.
Experiments were carried out to measure the effect of concentrations of glycerol on H-exchange (HX) rates by using myoglobin as a test protein. Concentrated glycerol has only a small slowing effect on the HX kinetics of freely exposed amides, studied in a small molecule model (acetamide). Larger effects occur in structured proteins. The effect of solvent glycerol on different parts of the HX curve of myoglobin was studied by use of a selective "kinetic labeling" approach. Concentrated glycerol exerts an apparently reverse effect on protein H exchange; the faster exchanging "surface" protons are least affected, while the slower and slower amide NH is further slowed by larger and larger factors. These results seem inconsistent with solvent penetration models which generally visualize slower and slower protons as being placed, and undergoing exchange, farther and farther from the solvent-protein interface. On the other hand, the results are as expected for the local unfolding model for protein H exchange since concentrated glycerol is known to stabilize proteins against unfolding. In the local unfolding model, slower exchanging protons are released by way of higher energy and therefore generally larger, unfolding reactions. Larger unfoldings must be more inhibited by the glycerol effect.  相似文献   

10.
Using nuclear magnetic resonance we have measured the hydrogen exchange (HX) in the Src homology region 3 (SH3) domain of alpha-spectrin as a function of pH*. At very acidic pH* values the exchange of most residues appears to occur via global unfolding, although several residues show abnormally large Gibbs energies of exchange, suggesting the presence of some residual structure in the unfolded state. At higher pH* HX occurs mainly via local or partial unfoldings. We have been able to characterize the coupling between the electrostatic interactions in this domain and the conformational fluctuations occurring under native conditions by analyzing the dependence upon pH* of the Gibbs energy of exchange. The SH3 domain seems to be composed of a central core, which requires large structural disruptions to become exposed to the solvent, surrounded by smaller subdomains, which fluctuate independently.  相似文献   

11.
Hydrogen exchange kinetic behavior of human erythrocyte glucose transporter protein in vesicles was studied in the absence and in the presence of D-glucose or a well known inhibitor, cytochalasin B. This is to detect a proposed channel of water penetrating into the protein through which the sugar molecule passes and to monitor any conformational changes induced by the substrate or inhibitor. Analyses of the kinetic data revealed several classes of hydrogens which exchange with readily distinguishable rates. Of 660 hydrogens detected per transporter, approximately 30% exchanged with rates generally characterized as those of free amide hydrogens indicating they are interfaced to solvent water. Since the transporter is known to be embedded deep in the hydrophobic area of the membrane with minimum exposure to the outside of the membrane lipid bilayer, a significant portion of these free amide hydrogens must be at the purported channel rather than outside of the membrane. D-Glucose and cytochalasin B affected the exchange kinetics of these presumably channel-associated free amide hydrogens rather differently. D-Glucose reduced the apparent rate constants, but not the total number. Cytochalasin B on the other hand reduced the total number to one-half without significantly changing the apparent rate constants. The remaining 70% of the labeled hydrogens exchanged with much slower rates which vary 10-10,000-fold, indicating that they are internally structured peptide amide and side chain hydrogens. Both D-glucose and cytochalasin B further reduced the rates of these hydrogens, indicating a global stabilization of the protein structure.  相似文献   

12.
Deuterium exchange was monitored by electrospray ionization mass spectrometry (ESI-MS) to study the slowly exchanging (hydrogen bonded) peptide hydrogens of several alpha-helical peptides and beta-sheet proteins. Polypeptides were synthetically engineered to have mainly disordered, alpha-helical, or beta-sheet structure. For 3 isomeric 31-residue alpha-helical peptides, the number of slowly exchanging hydrogens as measured by ESI-MS in 50% CF3CD2OD (pD 9.5) provided estimates of their alpha-helicities (26%, 40%, 94%) that agreed well with the values (17%, 34%, 98%) measured by circular dichroic spectroscopy in the same nondeuterated solvent. For 3 betabellins containing a pair of beta-sheets and a related disordered peptide, their order of structural stability (12D > 12S > 14D > 14S) shown by their deuterium exchange rates in 10% CD3OD/0.5% CD3CO2D (pD 3.8) as measured by ESI-MS was the same as their order of structural stability to unfolding with increasing temperature or guanidinium chloride concentration as measured by circular dichroic spectroscopy in water. Compared to monitoring deuterium exchange by proton NMR spectrometry, monitoring deuterium exchange by ESI-MS requires much less sample (1-50 micrograms), much shorter analysis time (10-90 min), and no chemical quenching of the exchange reaction.  相似文献   

13.
Native-state amide hydrogen exchange (HX) of proteins in the presence of denaturant has provided valuable details on the structures of equilibrium folding intermediates. Here, we extend HX theory to model thiol group exchange (SX) in single cysteine-containing variants of sperm whale ferric aquomyoglobin. SX is complementary to HX in that it monitors conformational opening events that expose side-chains, rather than the main chain, to solvent. A simple two-process model, consisting of EX2-limited local structural fluctuations and EX1-limited global unfolding, adequately accounts for all HX data. SX is described by the same model except at very low denaturant concentrations and when the bulky labeling reagent 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) is used. Under these conditions SX can occur by a novel denaturant-dependent process. This anomalous behavior is not observed when the smaller labeling reagent methyl methanethiosulfonate is employed, suggesting that it reflects a denaturant-induced increase in the amplitudes of local structural fluctuations. It also is not seen in heme-free apomyoglobin, which may indicate that local openings are sufficiently large in the absence of denaturant to allow DTNB unhindered access. Differences in SX kinetics obtained using the two labeling reagents provide estimates of the sizes of local opening reactions at different sites in the protein. At all sequence positions examined except for position 73, the same opening event appears to facilitate exchange of both backbone amide and side-chain thiol groups. The C73 thiol group is exposed by a low-energy fluctuation that does not expose its amide group to exchange.  相似文献   

14.
The hydrogen-deuterium exchange kinetics of 37 backbone amide residues in RNase T1 have been monitored at 25, 40, 45, and 50 degrees C at pD 5.6 and at 40 and 45 degrees C at pD 6.6. The hydrogen exchange rate constants of the hydrogen-bonded residues varied over eight orders of magnitude at 25 degrees C with 13 residues showing exchange rates consistent with exchange occurring as a result of global unfolding. These residues are located in strands 2-4 of the central beta-pleated sheet. The residues located in the alpha-helix and the remaining strands of the beta-sheet exhibited exchange behaviors consistent with exchange occurring due to local structural fluctuations. For several residues at 25 degrees C, the global free energy change calculated from the hydrogen exchange data was over 2 kcal/mol greater than the free energy of unfolding determined from urea denaturation experiments. The number of residues showing this unexpected behavior was found to increase with temperature. This apparent inconsistency can be explained quantitatively if the cis-trans isomerization of the two cis prolines, Pro-39 and Pro-55, is taken into account. The cis-trans isomerization equilibrium calculated from kinetic data indicates the free energy of the unfolded state will be 2.6 kcal/mol higher at 25 degrees C when the two prolines are cis rather than trans (Mayr LM, Odefey CO, Schutkowski M, Schmid FX. 1996. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique. Biochemistry 35: 5550-5561). The hydrogen exchange results are consistent with the most slowly exchanging hydrogens exchanging from a globally higher free energy unfolded state in which Pro-55 and Pro-39 are still predominantly in the cis conformation. When the conformational stabilities determined by hydrogen exchange are corrected for the proline isomerization equilibrium, the results are in excellent agreement with those from an analysis of urea denaturation curves.  相似文献   

15.
Jin X  Zhang J  Dai H  Sun H  Wang D  Wu J  Shi Y 《Biophysical chemistry》2007,129(2-3):269-278
The solution structure of human MICAL-1 calpolnin homology (CH) domain is composed of six alpha helices and one 3(10) helix. To study the unfolding of this domain, we carry out native-state hydrogen exchange, intrinsic fluorescence and far-UV circular dichroism experiments. The free energy of unfolding, DeltaG(H2O), is calculated to be 7.11+/-0.58 kcal mol(-1) from GuHCl denaturation at pH 6.5. Four cooperative unfolding units are found using native-state hydrogen exchange experiment. Forty-seven slow-exchange residues can be studied by native-state hydrogen exchange experiments. From the concentration dependence of exchange rates, free energy of amide hydrogen with solvent, DeltaG(HX) and m-value (sensitivity of exposure to denaturant) are obtained, which reveal four cooperative unfolding units. The slowest exchanging protons are distributed throughout the whole hydrophobic core of the protein, which might be the folding core. These results will help us understand the structure of MICAL-1 CH domain more deeply.  相似文献   

16.
The classical Linderstrøm-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (IUN). On the other hand, in an on-pathway three-state system (UIN), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments.  相似文献   

17.
S Segawa  K Kume 《Biopolymers》1986,25(10):1981-1996
The hydrogen-exchange reactions of peptide NH groups in lysozyme were studied by the change in the intensity of the amide II band in the ir spectrum. The slowest exchanging hydrogens, which are involved in intramolecular hydrogen bonding, are further divided into two groups at lower temperatures; half of them are exchanged through local unfolding and the other half through major cooperative unfolding. In order to study the correlation of the change in hydrogen-exchange rates with the change in the unfolding rate constant, we observed the effects of intrachain cross-linking, the addition of denaturant and ligand binding on the exchange rates through local unfolding. Although the exchange rate through major unfolding is greatly decreased by intrachain cross-linking between Glu 35 and Trp 108 (1/22000), the exchange rate through local unfolding is only slightly decreased (1/20). Even at higher temperatures, where most intact lysozyme molecules unfold, the folded conformation of cross-linked lysozyme remains compact, and no intermediate exists in which many side-chain atoms are packed loosely so that the hydrogen-exchange reaction occurs rapidly. Neither the addition of 2-PrOD molecules nor (NAG)3 binding affects the exchange rates through local unfolding. Our experiments confirm that the change in the unfolding rate constant does not correlate with the change in fluctuations in the relatively flexible hydrogen-bonded structure through which the exchange of peptide hydrogens takes place.  相似文献   

18.
Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high‐energy states that populate their folding free‐energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high‐energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high‐energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates.  相似文献   

19.
Using amide hydrogen exchange combined with electrospray ionization mass spectrometry, we have in this study determined the number of amide hydrogens on several peptides that become solvent-inaccessible as a result of their high-affinity interaction with the urokinase-type plasminogen activator receptor (uPAR). These experiments reveal that at least six out of eight amide hydrogens in a synthetic nine-mer peptide antagonist (AE105) become sequestered upon engagement in uPAR binding. Various uPAR mutants with decreased affinity for this peptide antagonist gave similar results, thereby indicating that deletion of the favorable interactions involving the side chains of these residues in uPAR does not affect the number of hydrogen bonds established by the main chain of the peptide ligand. The isolated growth factor-like domain (GFD) of the cognate serine protease ligand for uPAR showed 11 protected amide hydrogens in the receptor complex. Interestingly, a naturally occurring O-linked fucose on Thr(18) confers protection of two additional amide hydrogens in GFD when it forms a complex with uPAR. Dissociation of the uPAR-peptide complexes is accompanied by a correlated exchange of nearly all amide hydrogens on the peptide ligand. This yields bimodal isotope patterns from which dissociation rate constants can be determined. In addition, the distinct bimodal isotope distributions also allow investigation of the exchange kinetics of receptor-bound peptides providing information about the local structural motions at the interface. These exchange experiments therefore provide both structural and kinetic information on the interaction between uPAR and these small peptide antagonists, which in model systems show promise as inhibitors of intravasation of human cancer cells.  相似文献   

20.
Hydrogen exchange experiments provide detailed information about the local stability and the solvent accessibility of different regions of the structures of folded proteins, protein complexes, and amyloid fibrils. We introduce an approach to predict protection factors from hydrogen exchange in proteins based on the knowledge of their amino acid sequences without the inclusion of any additional structural information. These results suggest that the propensity of different regions of the structures of globular proteins to undergo local unfolding events can be predicted from their amino acid sequences with an accuracy of 80% or better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号