首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The levels of amino acids in globus pallidus, a structure heavily innervated with gamma-aminobutyric acid (GABA)-ergic terminals but few glutamergic terminals, were compared with the levels in neostriatum, a structure richly innervated with glutamergic terminals but intermediate in GABAergic terminals. The level of glutamate in neostriatum was twice as high as in globus pallidus whereas the level of GABA in globus pallidus was three times higher than in neostriatum. The level of aspartate was similar in both regions whereas the level of glutamine was correlated with the level of glutamate. Methionine sulfoximine, a glutamine synthetase inhibitor, reduced the level of glutamine to 10-20% of control in both structures. This reduction was accompanied by the largest decrease in the level of glutamate in neostriatum, indicating that transmitter glutamate turns over more rapidly than other glutamate pools. Likewise, insulin decreased the levels of glutamate and glutamine more in neostriatum than in globus pallidus. gamma-Vinyl GABA increased the level of GABA in globus pallidus more than in neostriatum although the percent increase was largest in neostriatum. Treatment with gamma-vinyl GABA was accompanied by a large reduction in the level of GABA, indicating that a substantial proportion of the glutamine pool is linked to GABA metabolism.  相似文献   

2.
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl(2) for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl(2) exposure. Then, [(3)H]-glutamate uptake was measured by liquid scintillation counting; Na(+)-K(+) ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na(+)-K(+) ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl(2). The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.  相似文献   

3.
Excessive brain Mn can produce toxicity with symptoms resembling parkinsonism. This syndrome, called "manganism," correlates with loss of dopamine in the striatum and cell death in the striatum and globus pallidus. A common hypothesis is that cell damage in Mn toxicity is caused by oxidation of important cell components by Mn3+. Determination of the amount of Mn3+ present, under a range of conditions, in neuronal cells and brain mitochondria represents an important step in evaluating the "damage through oxidation by Mn3+ hypothesis." In an earlier paper we used X-ray absorption near-edge structure (XANES) spectroscopy to determine the amount of Mn2+ and Mn3+ in brain mitochondria under a range of conditions. Here we extend the study to investigate the evidence for formation of Mn3+ through oxidation of Mn2+ by ROS in PC12 cells and in PC12 cells induced with nerve growth factor (NGF) to display a phenotype more like that of neurons. Although the results suggest that very small amounts of Mn3+ might be present at low Mn levels, probably in Mn superoxide dismutase, Mn3+ is not stabilized by complex formation in these cells and therefore does not accumulate to detectable amounts.  相似文献   

4.
The neurotoxic actions of polyamines such as spermine have been linked to their modulation of NMDA receptors, resulting in an excitotoxic cell death. Here, we demonstrate that chronic exposure to the polyamine spermine and acute exposure to the combination of spermine and glutamate result in significant toxicity to primary cultures of cerebellar granule neurons (CGNs). However, in both cases this cell death (a) lacks the characteristic cell swelling associated with the necrotic cell death induced by glutamate and (b) is characterized by the widespread formation of apoptotic nuclei. Whereas dizocilpine (MK-801) blocks the synergistic cell death resulting from acute exposure to spermine plus glutamate, neither MK-801 nor the calcium chelator EGTA appreciably attenuates CGN death resulting from chronic exposure to spermine. Consistent with previous reports, glutamate, both acute and chronic, causes CGN death that is characterized by cell swelling, sensitivity to MK-801 and EGTA, and only small numbers of apoptotic nuclei. Spermine-induced toxicity is not blocked by either the protein synthesis inhibitor cycloheximide or the pancaspase inhibitor tert-butoxycarbonyl-Asp-(O-methyl) fluoromethyl ketone. However, the antioxidant butylated hydroxyanisole is an effective blocker of spermine-induced CGN death, suggesting a free-radical component to this cell death. The intact spermine molecule, rather than a catabolic by-product, is required for cell death because the amine oxidase inhibitors N1,N2-bis(2,3-butadienyl)-1,4-butanediamine and aminoguanidine fail to block this toxicity. Thus, in CGNs, spermine-induced toxicity does not occur by its modulation of NMDA receptors, although, under some circumstances, NMDA receptor activation can modulate spermine-induced toxicity.  相似文献   

5.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

6.
Previous studies have shown that iron deficiency (ID) increases brain manganese (Mn), but specific regional changes have not been addressed. Weanling rats were fed one of three semipurified diets: control (CN), iron deficient (ID), or iron deficient/manganese fortified (IDMn+). Seven brain regions were analyzed for Mn concentration and amino acid (glutamate, glutamine, taurine, γ-aminobutyric acid) concentrations. Both ID and IDMn+ diets caused significant (p<0.05) increases in Mn concentration across brain regions compared to CN. The hippocampus was the only brain region in which the IDMn+ group accumulated significantly more Mn than both the CN and ID groups. ID significantly decreased GABA concentration in hippocampus, caudate putamen, and globus pallidus compared to CN rats. Taurine was significantly increased in the substantia nigra of the IDMn+ group compared to both ID and CN. ID also altered glutamate and glutamine concentrations in cortex, caudate putamen, and thalamus compared to CN. In the substantia nigra, Mn concentration positively correlated with increased taurine concentration, whereas in caudate putamen, Mn concentration negatively correlated with decreased GABA. These data show that ID is a significant risk factor for central nervous system Mn accumulation and that some of the neurochemical alterations associated with ID are specifically attributable to Mn accumulation.  相似文献   

7.
Exposure to high levels of manganese (Mn) results in a neurological disorder, termed manganism, which shares a similar phenotype to Parkinson's disease due to the involvement of the basal ganglia circuitry in both. The initial symptoms of manganism are likely due to the involvement of the globus pallidus, a region rich in gamma-aminobutyric acid (GABA) projections, while those of Parkinson's disease are related to the degeneration of the substantia nigra, a dopaminergic nucleus. Additionally, it is known that glutamate regulation is affected by increases in brain Mn levels. As Mn predominantly accumulates in the basal ganglia, it potentially could affect the regulation and interactions of all three neurotransmitters. This review will focus on the circuitry of these neurotransmitters within the basal ganglia and address potential sites for, as well as the temporal relationship, between Mn exposure and changes in the levels of these neurotransmitters. While most research has focused on perturbations in the dopaminergic system, there is evidence to support that early consequences of manganism also include disturbances in GABA regulation as well as glutamatergic-related excitotoxicity. Finally, we suggest that current research focus on the interdependence of these basal ganglial neurochemicals, with a greater emphasis on the GABAergic and glutamatergic systems.  相似文献   

8.
The role of Bax in glutamate-induced nerve cell death   总被引:4,自引:0,他引:4  
The role of the Bax gene product was examined in three forms of cortical nerve cell death in primary cultures. These include spontaneous cell death, oxidative glutamate toxicity, in which exogenous glutamate inhibits cystine uptake resulting in toxic oxidative stress, and ionotropic glutamate receptor-mediated excitotoxicity following a brief exposure to 10 microM glutamate. Primary cortical and hippocampal neuron cultures were established from embryos of Bax -/+ x Bax -/+ matings and the embryos genotyped and assayed for cell death in the three experimental paradigms. Cell death induced by oxidative glutamate toxicity and glutamate-mediated excitotoxicity was not altered in the Bax -/- homozygous knockout animals. In contrast, there was an approximately 50% inhibition of spontaneous cell death. These results suggest that a classical Bax-dependent apoptotic pathway contributes to the spontaneous cell death that takes place when nerve cells are initially exposed to cell culture conditions. A Bax-dependent programmed cell death pathway is not, however, utilized in oxidative glutamate toxicity and NMDA receptor-mediated excitotoxicity following a brief exposure to low concentrations of glutamate.  相似文献   

9.
By use of the radioligand [3H]spiroperidol, D2 3,4-dihydroxyphenylethylamine (dopamine) receptor binding characteristics were studied in calf globus pallidus and compared with those of neostriatum. Antagonist competition curves were monophasic and revealed similar affinities for neostriatum and globus pallidus, suggesting a uniform receptor population with one affinity state for antagonists. In both regions, competition curves with the agonist dopamine were biphasic, distinguishing a high- and low-agonist-affinity state. In neostriatum and globus pallidus, respectively, 45% and 19% of [3H]spiroperidol binding was displaced with high affinity and the remainder with low affinity. In neostriatum, the addition of 0.4 mM GTP resulted in a partial conversion from high- to low-affinity state with a remaining high-affinity component of 15%. In globus pallidus, dopamine binding was not altered by GTP. The capability of GTP to modulate agonist binding to D2 receptors appears to be dependent on their neuroanatomical localization.  相似文献   

10.
Injured motor neurons of the adult rat can survive, whereas similar axotomy causes gradual motor neuron death in the adult mouse. We report that the decreased expression of the neuronal glutamate transporter excitatory amino-acid carrier 1 (EAAC1) following nerve injury is associated with motor neuron death in the mouse. Glutamate transporters play a crucial role in prevention of neuronal death by suppressing glutamate toxicity. However, the possible functional role of EAAC1 in preventing neuron death has not been resolved as compared with glial glutamate transporters such as GLT-1. Here, we have revealed a unique 'rescue' function of EAAC1, which is independent of removal of extracellular glutamate. During apoptotic stimuli, a mitochondrial protein, holocytochrome c synthetase (HCCS), translocates to outside the mitochondria, binds to and suppresses the X-linked inhibitor of apoptosis protein (XIAP), leading to activation of caspase-3. The N-terminus of EAAC1 can bind to HCCS, which interferes with the HCCS-XIAP association, and thereby maintain XIAP activity. This unique anti-apoptotic mechanism of EAAC1 functions in rescuing PC12 cells and motor neurons from NGF deprivation and nerve injury, respectively.  相似文献   

11.
1. Glial cells are the most abundant cell population in the central nervous system. The aim of this study was to examine the effects of melatonin, 7-nitroindazole, and riluzole on glutamate toxicity in primary glial cell culture. 2. Glutamate toxicity was induced by addition of 100 μM glutamate to the cultures, and then 100 μM melatonin, 500 μM 7-nitroindazole, and 10 (M riluzole were administered in different groups. Lactate Dehydrogenase activity and nitrite levels were determined at the 1st, 6th, and 24th h. 3. Melatonin, 7-nitroindazole, and riluzole decrease Lactate Dehydrogenase activity at the 1st, 6th, and 24th h (at all hours, p<0.05). Nitrite levels were decreased by melatonin and riluzole at the 1st, 6th, and 24th h. 4. In this study, we observed that melatonin, 7-nitroindazole, and riluzole are effective as protective agents on glutamate toxicity in mixed glial cells.  相似文献   

12.
Previously we found that some cyclopentenone prostaglandin derivatives promoted neurite outgrowth from PC12 cells and dorsal root ganglia explants in the presence of nerve growth factor; and so we referred to them as neurite outgrowth-promoting prostaglandins (NEPPs). In this study, NEPPs protected HT22 cells against oxidative glutamate toxicity. NEPP6, one of the most effective promoters of neurite outgrowth in PC12 cells, protected the cells most potently among NEPPs 1--10. Several derivatives, NEPPs 11--19, were newly synthesized based on the chemical structure of NEPP6. NEPP11 had a more potent neuroprotective effect than NEPP6. NEPP11 also prevented the death of cortical neurons induced by various stimuli and reduced ischemic brain damage in mice. Biotinylated compounds of NEPPs were synthesized to investigate their cellular accumulation. NEPP6-biotin protected the cells and emitted potent signals from the cells. In contrast, biotinylated non-neuroprotective derivatives emitted much weaker signals. These results suggest that NEPPs are novel types of neurotrophic compounds characterized by their dual biological activities of promoting neurite outgrowth and preventing neuronal death and that their accumulation in the cells is closely associated with their neuroprotective actions.  相似文献   

13.
Glycine is a critical factor in ischemia as reduced astrocytic and increased extracellular glycine levels aggravate the neurotoxic effect of glutamate and consequently, increase the extent of brain damage. Extracellular levels of glycine are primarily regulated by the plasma membrane glycine transporter 1. In the present study, we examined the effects of transient ischemia (1 h occlusion of the middle cerebral artery; followed by 0 h, 0.5 h, 1 h, 2 h, 4 h, 24 h or 48 h reperfusion) on immunoreactivity and mRNA expression of glycine transporter 1 in the rat forebrain. In control animals, glycine transporter 1-immunoreactivity was strong in diencephalic and certain telencephalic structures, moderate in the globus pallidus, and rather low in the cortex and striatum. In situ hybridization studies revealed a similar distribution pattern of glycine transporter 1 mRNA expression. One hour occlusion of the middle cerebral artery resulted in a significant decrease in ipsilateral glycine transporter 1-immunoreactivity and mRNA expression in a circumscribed region of the preoptic/hypothalamic area; both the immunoreactivity and mRNA exhibited further reductions with increasing reperfusion time. In contrast, the cerebral cortex and the globus pallidus showed an increase of glycine transporter 1-immunoreactivity after 0.5 h reperfusion; the elevation proved to be transient in the somatosensory cortex and remained sustained in the globus pallidus after longer reperfusion times. Western blot analysis of globus pallidus samples from the ipsilateral side confirmed higher glycine transporter 1 protein levels. These results suggest an elevated expression of the transporter protein facilitating the glial uptake of glycine from the extracellular space. However, glycine transporter 1 mRNA expression was not significantly different in the penumbra regions from the corresponding contralateral sites of the injury. Together, these findings indicate that post-translational mechanisms are of primary importance in elevating glycine transporter 1 protein levels following transient ischemia.  相似文献   

14.
Nigrostriatal dopaminergic denervation is associated with complex changes in the functional and neurochemical anatomy of the basal ganglia. The excitatory neurotransmitter glutamate mediates neural signaling at crucial points of this circuitry, and glutamate receptors are differentially distributed in the basal ganglia. Available evidence suggests that the glutamatergic corticostriatal and subthalamofugal pathways become overactive after nigrostriatal dopamine depletion. In this study, we have analyzed the regulation of the GluR1 subunit of the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in the basal ganglia of primates following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopamine denervation. The dopamine denervation resulted in distinct alterations in GluR1 distribution: (1) GluR1 protein expression was markedly increased in caudate and putamen, and this was most pronounced in the striosomes; (2) GluR1 protein was altered minimally in subthalamic nucleus; (3) expression of GluR1 was down-regulated in the globus pallidus by 63% and in the substantia nigra by 57%. The down-regulation of GluR1 expression in the output nuclei of the basal ganglia, the internal segment of the globus pallidus and the substantia nigra pars reticulata, may be a compensation for the overactive glutamatergic input from subthalamic nucleus, which arises after striatal dopamine denervation. Our results indicate that the glutamatergic system undergoes regulatory changes in response to altered basal ganglia activity in a primate model of Parkinson's disease. Targeted manipulation of the glutamatergic system may be a viable approach to the symptomatic treatment of Parkinson's disease.  相似文献   

15.
Recently, iron deficiency has been connected with a heterogeneous accumulation of manganese in the rat brain. The striatum is particularly vulnerable, for there is a significant negative correlation between accumulated manganese and gamma-aminobutyric acid levels. The effect of dietary iron deficiency on the distribution of zinc and copper, two other divalent metals with essential neurobiological roles, is relatively unexplored. Thus, the primary goal of this study was to examine the effect of manipulating dietary iron and manganese levels on the concentrations of copper, iron, manganese and zinc in five rat brain regions as determined with inductively coupled plasma mass spectrometry analysis. Because divalent metal transporter has been implicated as a transporter of brain iron, manganese, and to a lesser extent zinc and copper, another goal of the study was to measure brain regional changes in transporter levels using Western blot analysis. As expected, there was a significant effect of iron deficiency (P < 0.05) on decreasing iron concentrations in the cerebellum and caudate putamen; and increasing manganese concentrations in caudate putamen, globus pallidus and substantia nigra. Furthermore, there was a significant effect of iron deficiency (P < 0.05) on increasing zinc concentration and a statistical trend (P = 0.08) toward iron deficiency-induced copper accumulation in the globus pallidus. Transporter protein in all five regions increased due to iron deficiency compared to control levels (P < 0.05); however, the globus pallidus and substantia nigra revealed the greatest increase. Therefore, the globus pallidus appears to be a target for divalent metal accumulation that is associated with dietary iron deficiency, potentially caused by increased transporter protein levels.  相似文献   

16.
Evidence is increasing that mitochondrial dysfunction is involved in amyotrophic lateral sclerosis, a neurodegenerative disease characterized by selective motoneuron death. To study the role of mitochondrial dysfunction in the pathways leading to motoneuron death, we developed an in vitro model of chronic motoneuron toxicity, based on malonate-induced inhibition of complex II in the mitochondrial electron transport chain. Treatment with malonate resulted in a dose-dependent decrease in cellular ATP levels. We observed that motoneurons were significantly more vulnerable to mitochondrial inhibition than control neurons in the dorsal horn. We could reproduce this dose-dependent phenomenon with the complex IV inhibitor sodium azide. The free radical scavenger alpha-phenyl-N-tert-butylnitrone, the AMPA/kainate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione, and riluzole, a drug that is currently used for the treatment of amyotrophic lateral sclerosis, were protective against malonate-induced motoneuron death. Furthermore, the caspase inhibitors N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone and z-Asp-Glu-Val-Asp-fluoromethyl ketone were both protective against malonate toxicity. Our model shows that chronic mitochondrial inhibition leads to selective motoneuron death, which is most likely apoptotic.  相似文献   

17.
Typical antipsychotic drugs with a high extrapyramidal motor side-effects liability markedly increase extracellular dopamine in the caudate-putamen, while atypical antipsychotic drugs with a low incidence of extrapyramidal motor side-effects have less pronounced stimulating actions on striatal dopamine. Therefore, it has been suggested that the extrapyramidal motor side-effects liability of antipsychotic drugs (APD) is correlated with their ability to increase extracellular dopamine in the caudate-putamen. The globus pallidus (GP) is another basal ganglia structure probably mediating extrapyramidal motor side-effects of typical antipsychotic drugs. Therefore, the present study sought to determine whether extracellular dopamine in the globus pallidus might be a further indicator to differentiate neurochemical actions of typical and atypical antipsychotic drugs. Using in vivo microdialysis we compared effects on pallidal dopamine induced by typical and atypical antipsychotic drugs in rats. Experiment I demonstrated that systemic administration of haloperidol (1 mg/kg; i.p.) and clozapine (20 mg/kg; i.p.) induced a significant pallidal dopamine release to about 160 and 180% of baseline, respectively. Experiment II revealed that reverse microdialysis of raclopride and clozapine using a cumulative dosing regimen did not stimulate extracellular dopamine in the globus pallidus if low (1microM) or intermediate (10 and 100 microM) concentrations were used. Only at a high concentration (1,000 microM), raclopride and clozapine induced a significant pallidal dopamine release to about 130 and 300% of baseline values, respectively. Thus, effects of typical and atypical antipsychotic drugs on pallidal dopamine were similar and thus, may not be related to their differential extrapyramidal motor side-effects liability. Furthermore, the finding that reverse microdialysis of raclopride over a wide range of concentrations did not stimulate pallidal dopamine concentrations tentatively suggests that pallidal dopamine release under basal conditions is not regulated by D2 autoreceptors.  相似文献   

18.
19.
Abstract: The K+-induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14C]Dopamine formed from L-[U-14C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14C]dopamine from L-[U-14C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine.  相似文献   

20.
Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号