首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spirochetes causing Lyme borreliosis are obligate parasites that can only be found in a tick vector or a vertebrate host. The ability to survive in these two disparate environments requires up and downregulation of specific genes by regulatory circuits that remain largely obscure. In this work on the Lyme spirochete, B. burgdorferi, we show that a disruption of the hrpA gene, which encodes a putative RNA helicase, results in a complete loss in the ability of the spirochetes to infect mice by needle inoculation. Studies of protein expression in culture by 2D gels revealed a change in the expression of 33 proteins in hrpA clones relative to the wild-type parent. Quantitative characterization of protein expression by iTRAQ analysis revealed a total of 187 differentially regulated proteins in an hrpA background: 90 downregulated and 97 upregulated. Forty-two of the 90 downregulated and 65 of the 97 upregulated proteins are not regulated under any conditions by the previously reported regulators in B. burgdorferi (bosR, rrp2, rpoN, rpoS or rrp1). Downregulated and upregulated proteins also fell into distinct functional categories. We conclude that HrpA is part of a new and distinct global regulatory pathway in B. burgdorferi gene expression. Because an HrpA orthologue is present in many bacteria, its participation in global regulation in B. burgdorferi may have relevance in other bacterial species where its function remains obscure. We believe this to be the first report of a role for an RNA helicase in a global regulatory pathway in bacteria. This finding is particularly timely with the recent growth of the field of RNA regulation of gene expression and the ability of RNA helicases to modulate RNA structure and function.  相似文献   

2.
3.
4.
Lyme disease is the most common vector-borne disease in the United States. The causative agent is the spirochete Borrelia burgdorferi. The copy number and organization of the genes encoding the rRNAs of this organism were determined. There is a single gene for 16S rRNA and two copies each of the 23S rRNA and 5S rRNA genes. All of the genes are located within a chromosomal fragment of approximately 9.5 to 10.0 kb. The 23S and 5S rRNA genes are tandemly duplicated in the order 23S-5S-23S-5S and are apparently not linked to the 16S rRNA gene, which is situated over 2 kb upstream from the 23S-5S duplication. The individual copies of the 23S-5S duplication are separated by a 182-bp spacer. Within each 23S-5S unit, an identical 22-bp spacer separates the 23S and 5S rRNA sequences from each other. The genome organization of the 23S-5S gene cluster in a number of different B. burgdorferi isolates obtained at a number of different geographical locations, as well as in several other species of Borrelia, was investigated. All isolates of B. burgdorferi tested displayed the tandem duplication, whereas the closely related species B. hermsii, B. anserina, and B. turicatae all contained a single copy of each of the genes. In addition, different geographical isolates of B. burgdorferi can be differentiated on the basis of a restriction fragment length polymorphism associated with the 23S-5S gene cluster. This polymorphism can be a useful tool for the determination of genetic relatedness between different isolates of B. burgdorferi.  相似文献   

5.
6.
Outer surface protein C (OspC) is a major antigen on the surface of the Lyme disease spirochete, Borrelia burgdorferi, when it is being transmitted to humans. Crystal structures of OspC have been determined for strains HB19 and B31 to 1.8 and 2.5 A resolution, respectively. The three-dimensional structure is predominantly helical. This is in contrast to the structure of OspA, a major surface protein mainly present when spirochetes are residing in the midgut of unfed ticks, which is mostly beta-sheet. The surface of OspC that would project away from the spirochete's membrane has a region of strong negative electrostatic potential which may be involved in binding to positively charged host ligands. This feature is present only on OspCs from strains known to cause invasive human disease.  相似文献   

7.
We compared the relative infectivity to vector ticks of gray catbirds (Dumetella carolinensis) and white-footed mice (Peromyscus leucopus) for the Lyme disease spirochete (Borrelia burgdorferi). Of 28 catbirds captured in a site enzootic for this agent, 18 were infested by immature Ixodes dammini, the tick vector. By comparison, each of 32 mice sampled concurrently from the same site was infested, and by about 10 times as many ticks as were found infesting the 3 most commonly netted bird species. Although 76% of noninfected larval ticks placed on these mice in a xenodiagnosis became infected, none of the ticks similarly placed on 12 catbirds did so. Spirochetes were detected in ticks derived from 2 Carolina wrens (Thryothorus ludovicianus) and a common yellowthroat (Geothlypis trichas), but these species' potential contribution to infecting ticks does not compare with that of mice. Thus, although birds may help establish new foci of ticks, catbirds, at least, do not appear to contribute as reservoirs of infection.  相似文献   

8.
Isolation of the Lyme disease spirochete from mammals in Minnesota   总被引:12,自引:0,他引:12  
Lyme disease spirochetes were isolated from the kidneys of two Peromyscus spp. trapped in Minnesota in September and October 1983. No spirochetes were isolated from white-tailed deer (Odocoileus virginianus), red backed voles (Clethrionomys gapperi), or shrews (Sorexy cinereus and Blarina brevicauda). This is the first report of the isolation of the Lyme disease spirochete from the midwestern United States and isolations from these animals, which were free of ticks, suggest that the Lyme disease spirochete may persist in animal organs for months.  相似文献   

9.
The ospA gene of Borrelia burgdorferi encodes an outer membrane protein which is a major antigen of the Lyme disease agent. Two sequence-specific sets of oligonucleotide primers were used to specify the amplification of the ospA coding sequence by the polymerase chain reaction. One set allowed the entire ospA sequence to be amplified, while the other primed amplification of a truncated form of ospA lacking the first 17 codons specified by the wild-type ospA structural gene, residues believed to constitute a signal sequence which normally would direct localization of the ospA protein to the Borrelia cell's outer membrane. Each set of primers also contained sequences near their 5' ends which facilitated cloning of the amplified DNA directly into a high level expression system based on bacteriophage T7 genetic elements. We showed that the full-length OspA protein is synthesized poorly in Escherichia coli and it is associated with the insoluble membrane fraction. In contrast, the truncated form can be expressed to very high levels and it is soluble. The truncated protein was purified to homogeneity and partially characterized. Its N-terminal sequence and molecular weight derived from sodium dodecyl sulfate-polyacrylamide gel electrophoresis agree with those deduced from the DNA sequence. It is a monomer with a native molecular weight of 28,000 and it is very resistant to digestion by trypsin even though it is rather rich in lysine residues (16 mol%). Recombinant OspA protein synthesized in E. coli is recognized by antibodies in sera of Lyme patients, which suggests that the protein may be useful in immunoassays and as a possible immunogen to protect against Lyme borreliosis.  相似文献   

10.
Binding of glycosaminoglycans (GAGs) by Borrelia burgdorferi, the Lyme disease spirochete, has the potential to promote the colonization of diverse tissues. GAG binding by B. burgdorferi is associated with haemagglutination and we have identified a 26 kDa protein, which we have termed Bgp (Borrelia GAG-binding protein), on the basis of its ability to bind to heparin and erythrocytes. Bgp was found in outer membrane fractions of B. burgdorferi and on the surface of intact bacteria, as assayed by labelling with a membrane-impermeable biotinylating agent or anti-Bgp antibodies. Purified recombinant Bgp agglutinated erythrocytes, binds to the same spectrum of GAGs as the B. burgdorferi strain from which the cloned bgp sequence was obtained, and inhibited B. burgdorferi binding to purified GAGs and to cultured mammalian cells. Thus, Bgp is a strong candidate for a GAG-binding adhesin of B. burgdorferi.  相似文献   

11.
The structure of the 60 kDa pyrophosphate (PP(i))-dependent phosphofructokinase (PFK) from Borrelia burgdorferi has been solved and refined (R(free) = 0.243) at 2.55 A resolution. The domain structure of eubacterial ATP-dependent PFKs is conserved in B. burgdorferi PFK, and there are three large insertions relative to E. coli PFK, including a helical domain containing a hairpin structure that interacts with the active site. Asp177, conserved in all PP(i) PFKs, negates the binding of the alpha-phosphate group of ATP and likely contacts the essential Mg(2+) cation via a water molecule. Asn181 blocks the binding of the adenine moiety of ATP. Lys203 hydrogen bonds to a sulfate anion that likely mimics PP(i) substrate binding.  相似文献   

12.
13.
14.
A bacteriophage with a B-3 morphology was detected by electron microscopy in a spirochete isolated from the tick Ixodes dammini. It has a 40- to 50-nm elongated head and a tail 50 to 70 nm in length. It appears devoid of collars or kite-tail structure. The spirochete has been identified as the causative agent of Lyme disease.  相似文献   

15.
The western fence lizard, Sceloporus occidentalis, is refractory to experimental infection with Borrelia burgdorferi sensu stricto, one of several Lyme disease spirochetes pathogenic for humans. Another member of the Lyme disease spirochete complex, Borrelia bissettii, is distributed widely throughout North America and a similar, if not identical, spirochete has been implicated as a human pathogen in southern Europe. To determine the susceptibility of S. occidentalis to B. bissettii, 6 na?ve lizards were exposed to the feeding activities of Ixodes pacificus nymphs experimentally infected with this spirochete. None of the lizards developed spirochetemias detectable by polymerase chain reaction for up to 8 wk post-tick feeding, infected nymphs apparently lost their B. bissettii infections within 1-2 wk after engorgement, and xenodiagnostic L. pacificus larvae that co-fed alongside infected nymphs did not acquire and maintain spirochetes. In contrast, 3 of 4 na?ve deer mice (Peromyscus maniculatus) exposed similarly to feeding by 1 or more B. bissettii-infected nymphs developed patent infections within 4 wk. These and previous findings suggest that the complement system of S. occidentalis typically destroys B. burgdorferi sensu lato spirochetes present in tissues of attached and feeding I. pacificus nymphs, thereby potentially reducing the probability of transmission of these bacteria to humans or other animals by the resultant adult ticks.  相似文献   

16.
17.
18.
The various hypotheses concerning the etiologic agent of erythema chronicum migrans of Europe and of Lyme disease in the United States are reviewed, and an account of events that led to the discovery of the causative spirochetal agent in Ixodes dammini is presented. Spirochetes morphologically and antigenically similar, if not identical to, the organism detected in I. dammini were also found for the first time in Ixodes pacificus and Ixodes ricinus, the vectors hitherto incriminated, respectively, in western United States and Europe. In most infected ticks, spirochetal development was found to be limited to the midgut. Ticks with generalized infections were shown to transmit spirochetes via eggs, but infections decreased in intensity and became restricted to the central ganglion as filial ticks developed to adults. Although the mechanisms of transmission to a host are still under investigation, the spirochetes may be transmitted by saliva of ticks with generalized infectious and possibly also by regurgitation of infected gut contents, or even by means of infected fecal material.  相似文献   

19.
20.
KpnBI is a restriction-modification (R-M) system recognized in the GM236 strain of Klebsiella pneumoniae. Here, the KpnBI modification genes were cloned into a plasmid using a modification expression screening method. The modification genes that consist of both hsdM (2631 bp) and hsdS (1344 bp) genes were identified on an 8.2 kb EcoRI chromosomal fragment. These two genes overlap by one base and share the same promoter located upstream of the hsdM gene. Using recently developed plasmid R-M tests and a computer program RM Search, the DNA recognition sequence for the KpnBI enzymes was identified as a new 8 nt sequence containing one degenerate base with a 6 nt spacer, CAAANNNNNNRTCA. From Dam methylation and HindIII sensitivity tests, the methylation loci were predicted to be the italicized third adenine in the 5′ specific region and the adenine opposite the italicized thymine in the 3′ specific region. Combined with previous sequence data for hsdR, we concluded that the KpnBI system is a typical type I R-M system. The deduced amino acid sequences of the three subunits of the KpnBI system show only limited homologies (25 to 33% identity) at best, to the four previously categorized type I families (IA, IB, IC, and ID). Furthermore, their identity scores to other uncharacterized putative genome type I sequences were 53% at maximum. Therefore, we propose that KpnBI is the prototype of a new ‘type IE’ family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号