首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pepsin-resistant triple helical domain (chain 50,000 Mr) of type VIII collagen was isolated from bovine corneal Descemet's membrane and used as an immunogen for the production of mAbs. An antibody was selected for biochemical and tissue immunofluorescence studies which reacted both with Descemet's membrane and with type VIII collagen 50,000-Mr polypeptides by competition ELISA and immunoblotting. This antibody exhibited no crossreactivity with collagen types I-VI by competition ELISA. The mAb specifically precipitated a high molecular mass component of type VIII collagen (EC2, of chain 125,000 Mr) from the culture medium of subconfluent bovine corneal endothelial cells metabolically labeled for 24 h. In contrast, confluent cells in the presence of FCS and isotope for 7 d secreted a collagenous component of chain 60,000 Mr that did not react with the anti-type VIII collagen IgG. Type VIII collagen therefore appears to be synthesized as a discontinuous triple helical molecule with a predominant chain 125,000 Mr by subconfluent, proliferating cells in culture. Immunofluorescence studies with the mAb showed that type VIII collagen was deposited as fibrils in the extracellular matrix of corneal endothelial cells. In the fetal calf, type VIII collagen was absent from basement membranes and was found in a limited number of tissues. In addition to the linear staining pattern observed in the Descemet's membrane, type VIII collagen was found in highly fibrillar arrays in the ocular sclera, in the meninges surrounding brain, spinal cord, and optic nerve, and in periosteum and perichondrium. Fine fibrils were evident in the white matter of spinal cord, whereas a more generalized staining was apparent in the matrices of cartilage and bone. Despite attempts to unmask the epitope, type VIII collagen was not found in aorta, kidney, lung, liver, skin, and ligament. We conclude that this unusual collagen is a component of certain specialized extracellular matrices, several of which are derived from the neural crest.  相似文献   

2.
Characterization of the precursor form of type VI collagen   总被引:10,自引:0,他引:10  
Well characterized monospecific antisera against pepsin-extracted bovine type VI collagen were used to identify and characterize the intact form of type VI collagen. In immunoblotting experiments the antisera reacted with the pepsin-resistant fragments of the alpha 1(VI) and alpha 3(VI) chains, but not with the fragment of the alpha 2(VI) chain. Extracts obtained from uterus and aorta with 6 M guanidine HCl contained two immunoreactive polypeptides of Mr = 190,000 and 180,000 based on globular protein standards. Cleavage of extracts with pepsin generated the previously characterized pepsin-resistant fragments of alpha 1(VI) and alpha 3(VI), indicating that the higher molecular weight polypeptides represent the intact parent chains, alpha 1(VI) and alpha 3(VI). Digestion of extracts with bacterial collagenase released an Mr = 100,000 noncollagenous fragment from the alpha 1(VI) chain. Thus, intact type VI collagen in tissues contains a relatively short triple helical domain and at least one very large globular domain which is sensitive to pepsin but resistant to collagenase digestion. Immunoblotting revealed a polypeptide of Mr = 240,000, which we suggest represents the pro-alpha 1(VI) chain, in the culture medium of bovine fibroblasts. Bands intermediate in molecular weight between 240,000 and 190,000 were identified in cell layers. These findings establish type VI collagen as a protein with very large nontriple helical domains, a property that undoubtedly plays an important role in its function.  相似文献   

3.
Human factor VIII was isolated from commercial factor VIII concentrates and found to consist of multiple polypeptides with molecular weights ranging from 80 000 to 210 000. Immunological and amino acid sequence data identified these polypeptides as subunits of factor VIII. N-Terminal amino acid sequence analysis determined that the Mr 210 000 and 80 000 proteins are derived from the N- and C-terminal portions of factor VIII, respectively; Mr 90 000-180 000 polypeptides are derived from the Mr 210 000 polypeptide by C-terminal cleavages. Treatment of purified factor VIII with thrombin resulted in proteolysis of Mr 80 000-210 000 proteins and the generation of polypeptides of Mr 73 000, 50 000, and 43 000. Maximum coagulant activity of thrombin-activated factor VIII was correlated with the generation of these polypeptides. The proteolysis as well as activation of factor VIII by thrombin was found to be markedly dependent on CaCl2 concentration. Proteolysis of factor VIII with activated protein C (APC) resulted in degradation of the Mr 90 000-210 000 proteins with the generation of an Mr 45 000 fragment. This cleavage correlated with inactivation of factor VIII by APC. The Mr 80 000 protein was not degraded by APC. Factor Xa cleaved the Mr 80 000-210 000 factor VIII proteins, resulting in the generation of fragments of Mr 73 000, 67 000, 50 000, 45 000, and 43 000. Factor Xa was found to initially activate and subsequently inactivate factor VIII.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To investigate the nature of the hexagonal lattice structure in Descemet's membrane, monoclonal antibodies were raised against a homogenate of bovine Descemet's membranes. They were screened by immunofluorescence microscopy to obtain antibodies that label Descement's membrane. Some monoclonal antibodies labeled both Descemet's membrane and fine filaments within the stroma. In electron microscopy, with immunogold labeling on a critical point dried specimen, the antibodies labeled the hexagonal lattices and long-spacing structures produced by the bovine corneal endothelial cells in culture; 6A2 antibodies labeled the nodes of the lattice and 9H3 antibodies labeled the sides of the lattice. These antibodies also labeled the hexagonal lattice of Descemet's membrane in situ in ultrathin frozen sectioning. In immunofluorescence, these antibodies stained the sclera, choroid, and optic nerve sheath and its septum. They also labeled the dura mater of the spinal cord, and the perichondrium of the tracheal cartilage. In immunoblotting, the antibodies recognized 64-kD collagenous peptides both in tissue culture and in Descemet's membrane in vivo. They also recognized 50-kD pepsin-resistant fragments from Descemet's membranes that are related to type VIII collagen. However, they did not react either in immunoblotting or in immunoprecipitation with medium of subconfluent cultures from which type VIII collagen had been obtained. The results are discussed with reference to the nature of type VIII collagen, which is currently under dispute. This lattice collagen may be a member of a novel class of long-spacing fibrils.  相似文献   

5.
6.
The precise biochemical defects in connective-tissue metabolism that are responsible for the laxity of skin seen in the syndrome of cutis laxa are largely unknown. We have studied fibroblasts cultured from skin explants of a 2-year-old male with the syndrome. Electron-microscopic examination of this skin revealed decreased amounts of amorphous elastin and an increase in elastin-associated microfibrils. Although the cultured fibroblasts were similar to control skin fibroblasts in morphology, growth rate and total protein synthesis, there was a 4-6-fold increase in accumulation of a collagenous protein of Mr 140 000 in both the culture medium and in the cell layer. This protein was structurally distinct from collagen types I, III, IV, V and VIII. It was found to be related to a cell-surface-associated glycoprotein, GP140, by both antigenic cross-reactivity and peptide mapping. Our data support observations that GP140 is a precursor of at least one form of pepsin-extracted type VI collagen.  相似文献   

7.
Biosynthesis and regulation of type V collagen in diploid human fibroblasts   总被引:11,自引:0,他引:11  
The biosynthesis of type V collagen and its regulation were studied using diploid human gingival fibroblasts. Cells were metabolically labeled with radioactive amino acids and labeled proteins were subjected to limited pepsin digestion, DEAE-cellulose chromatography at 15 degrees C, and polyacrylamide gel electrophoresis. Proteins eluted from DEAE-cellulose columns by 0.25 M NaCl contained a collagen species which was resistant to mammalian collagenase and had alpha chains with hydroxylysine/lysine ratios and CNBr peptide patterns similar to alpha 1(V) and alpha 2(V). Procollagen(V) fractions obtained by DEAE-cellulose chromatography and immunoprecipitates of type V collagen antibody contained polypeptides with Mr = 239,000, 219,000, 198,000, 174,000, 157,000, and 132,000. By comparing the CNBr peptide maps of these proteins with those of standard alpha 1(V) and alpha 2(V) chains, the first three polypeptides were shown to be related to alpha 1(V) and the others to alpha 2(V). It was concluded that the gingival fibroblasts synthesize type V collagen, that the pro alpha 1(V) and the pro alpha 2(V) chains have Mr = 239,000 and 174,000, respectively, and that the alpha 1(V) and alpha 2(V) chains laid in the form of fibrils have Mr = 198,000 and 132,000, respectively. A detectable amount of type V collagen was synthesized only at high cell density, and it was associated with the cell layer. The amount and proportion of type V synthesized were increased when the cells were labeled in the presence of serum, and the increase was accompanied by a decrease in type III. This effect was dependent on serum concentration. Serum obtained from platelet-poor plasma failed to elicit this effect, and it was restored by the addition of platelet-derived growth factor. Platelet-derived growth factor was effective in medium with and without platelet-poor serum. Thus, it appears that platelet-derived growth factor may be an important regulatory factor in the synthesis of types V and III collagens.  相似文献   

8.
Native type IV collagen was isolated from human placental tissue by pepsin digestion, fractional salt precipitation, reduction and alkylation, a second pepsin digestion, and chromatography on diethylaminoethyl- and carboxymethyl-cellulose. After denaturation, 10 distinct peptides were isolated from this material by molecular sieve, ion-exchange, and high-performance liquid chromatography. All of the peptides were found to have amino acid compositions characteristic of type IV collagen. Analysis of the eight major peptides by amino-terminal amino acid sequencing and by cyanogen bromide and tryptic peptide mapping has revealed the manner in which they are derived from type IV collagen. Pepsin liberates two large peptides by attacking non-triple-helical regions, one derived from the alpha 1 (IV) chain (F2, Mr 90 000) and one derived from the alpha 2 (IV) chain (F3, Mr 75 000). The alpha 1 (IV)-derived F2 peptide is also represented in the pepsin digest by amino-terminal and carboxy-terminal subfragments [F4c (Mr 41 000) and F4a (Mr 60 000)], as is the alpha 2 (IV)-derived F3 peptide [F5 (Mr 28 000) and F4b (Mr 50 000), respectively]. These findings indicate that the molecular regions from which the larger peptides are derived in themselves contain pepsin-sensitive (non-triple-helical) domains. In addition, several of the peptides examined were found to be present in two slightly different forms, suggesting that closely adjacent pepsin-sensitive sites often exist within the type IV collagen molecules. The methods outlined here provide a reliable means by which identifiable type IV collagen peptides can be isolated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Type X collagen, a product of hypertrophic chondrocytes.   总被引:14,自引:1,他引:13       下载免费PDF全文
The synthesis of collagen types IX and X by explants of chick-embryo cartilages was investigated. When sternal cartilage labelled for 24h with [3H]proline was extracted with 4M-guanidinium chloride, up to 20% of the 3H-labelled collagen laid down in the tissue could be accounted for by the low-Mr collagenous polypeptides (H and J chains) of type IX collagen; but no type X collagen could be detected. Explants of tibiotarsal and femoral cartilages were found to synthesize type IX collagen mainly in zones 1 and 2 of chondrocyte proliferation and elongation, whereas type X collagen was shown to be a product of the hypertrophic chondrocytes in zone 3. Pulse-chase experiments with tibiotarsal (zone-3) explants demonstrated a time-dependent conversion of type X procollagen into a smaller species whose polypeptides were of Mr 49 000. The processed chains [alpha 1(X) chains] were shown by peptide mapping techniques to share a common identity with the pro alpha 1(X) chains of Mr 59 000. No evidence for processing of type IX collagen was obtained in analogous pulse-chase experiments with sternal tissue. When chondrocytes from tibiotarsal cartilage (zone 3) were cultured on plastic under standard conditions for 4-10 weeks they released large amounts of type X procollagen into the medium. However, 2M-MgCl2 extracts of the cell layer were found to contain mainly the processed collagen comprising alpha 1(X) chains. The native type X procollagen purified from culture medium was shown by rotary shadowing to occur as a short rod-like molecule 148 nm in length with a terminal globular extension, whereas the processed species comprising alpha 1(X) chains of Mr 49 000 was detected by electron microscopy as the linear 148 nm segment.  相似文献   

10.
Radioactive proline-labeled type VIII collagen was biosynthesized in the presence of beta-aminoproprionitrile by rabbit corneal endothelial cells and isolated from the culture medium. Type VIII was purified in the presence of protease inhibitors and at neutral pH by ultrafiltration, precipitation with 3.9 M NaCl, sedimentation in sucrose gradients, and DEAE-Sephacel chromatography. The major components of this collagen, VIII-1, -2, and -3, exhibited apparent molecular weights of greater than 194,000, 124,000, and 61,000, respectively, and were shown to contain identical CNBr peptides. Following separation of VIII-1, -2, and -3 from each other and any residual proteases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, exposure to acetic acid led to the conversion of VIII-1 to VIII-2 and VIII-3. Thus, VIII-1 is not a continuous single peptide chain, and the preliminary interrupted-helix model of the type VIII structure (Benya, P. D. (1980) Renal Physiol. 3, 30-35) was revised. VIII-3 appears to be the parent alpha 1 (VIII)-chain, with VIII-2 and VIII-1 representing beta- and gamma-chain configurations stabilized by strong noncovalent acid-labile interactions and beta-aminoproprionitrile-insensitive covalent cross-links. Based on two-dimensional CNBr peptide mapping, the alpha-chain is composed of six peptides. Mr 5,300-19,600. The terminal peptides are pepsin sensitive and correlate with two noncollagenous domains, NC1 (Mr 14,700) and NC2 (Mr 4-5,000). NC1 contains the site of acid-labile chain association.  相似文献   

11.
Assembly of chick and bovine lens-capsule collagen.   总被引:1,自引:1,他引:0       下载免费PDF全文
Chick-embryo and adult bovine lens-capsular epithelia in organ culture synthesized 4-hydroxy[3H]proline-containing polypeptides when incubated in the presence of [3H]proline. These collagenous polypeptides of apparent Mr 180 000, 175 000 and 160 000 became incorporated with time into aggregates of higher molecular size. The formation of such aggregates was inhibited when the tissues were labelled in the presence of beta-aminopropionitrile, thereby implicating lysine-derived cross-links in aggregate formation. When the tissues were incubated in the presence of tunicamycin, the collagenous polypeptides synthesized exhibited increased electrophoretic mobilities on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The addition to lens-capsule incubation medium of alpha alpha'-bipyridine led to the synthesis of underhydroxylated type IV collagen, also of increased electrophoretic mobility. Extended pulse-chase experiments indicated that such underhydroxylated collagen did not participate in aggregate formation, but was at least as stable as fully hydroxylated non-cross-linked collagen synthesized in the presence of beta-aminopropionitrile. Native type IV collagen, recovered from the culture medium when capsules were incubated with [3H]proline for 24h, was purified by ion-exchange chromatography. Separations conducted on CM-cellulose under denaturing and nondenaturing conditions suggested that the alpha 1(IV) and alpha 2(IV) chains occur in the same heterologous triple helix. Densitometric analyses of appropriate fluorograms indicated that these two polypeptides occur in a 2:1 ratio, suggesting that lens-capsule collagen is synthesized as a triple-helical molecule of composition [alpha 1(IV)]2 alpha 2(IV).  相似文献   

12.
Biosynthetic and structural properties of endothelial cell type VIII collagen   总被引:16,自引:0,他引:16  
A highly unusual endothelial cell collagen (Sage, H., Pritzl, P., and Bornstein, P., (1980) Biochemistry 19, 5747-5755) has been characterized in greater detail. Pulse-chase experiments with bovine aortic endothelial cells revealed two nondisulfide-bonded collagens, of apparent chain Mr = 177,000 and 125,000, with an estimated synthesis and secretion time of 75 min. Stepwise, quantitative processing to stable lower molecular weight forms as described for type I procollagen was not observed. Endothelial collagen was secreted over a temperature range of 24-37 degrees C and, prior to heat denaturation, did not display affinity for a gelatin-binding fragment of fibronectin coupled to Sepharose. The presence of a pepsin-resistant domain (Mr = 50,000) in both the soluble and cell layer-associated forms of this protein was shown by ion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Endothelial collagen was cleaved by vertebrate collagenase into several discrete fragments that differed in molecular weight from the characteristic alpha A and alpha B fragments generated from the interstitial collagens. Nontriple helical domains corresponding to the NH2- and COOH-terminal propeptides of other procollagen types were not found after incubation of endothelial collagen with bacterial collagenase. Additional evidence for the lack of extended noncollagenous sequences was provided by studies with mast cell proteases, which convert native procollagen to collagen but are unreactive toward native interstitial collagens. Endothelial collagen was not cleaved by these enzymes at 37 degrees C, but, as observed for interstitial collagen alpha chains, required prior heating at elevated temperatures for cleavage to occur. In view of this unique set of structural characteristics, and a distribution that is not restricted to the endothelium, we have designated this protein as type VIII collagen.  相似文献   

13.
In the present study collagens were isolated and identified from morphologically pure basement membrane material. Preparations of rabbit renal tubules devoid of contaminating glomeruli were obtained by homogenization and sieving of kidney cortices. Cellular material was removed by sequential detergent solubilization and the purity of the resultant tubular basement membrane was verified by transmission electron microscopy. The collagenous component of this ultrastructurally pure starting material was isolated by limited pepsinization and salt precipitation. Polyacrylamide gel electrophoresis of this collagen under nonreducing conditions resulted in four major bands: 300,000 (γ component), 100,000 (100K), 80,000 (80K), and 50,000 (50K). Individual collagen fractions of each of these molecular weights were then isolated from preparative polyacrylamide gels. Identification by their electrophoretic properties and cyanogen bromide peptide patterns leads us to believe that: (i) the 100K is composed of the C chain of type IV collagen; (ii) the 80K and 50K are derived from the genetically distinct D chain of type IV collagen; (iii) the γ component is structurally related to the 100K, 80K, and 50K; and (iv) A and B chains (type V collagen) are not major components of rabbit renal tubular basement membranes.  相似文献   

14.
Monoclonal antibodies were prepared by immunization with whole tissue and were selected for their reactivity with extracellular matrices in tissue immunofluorescence. Two such antibodies were used to isolate the corresponding antigen from pepsin extracts of human placental tissue by immunochromatography. In each case, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the isolated material was composed of four polypeptides of Mr between 57,000 and 85,000 that were disulfide-bonded into a high molecular weight aggregate. Amino acid analyses showed that the isolated material was partly collagenous. The material was shown to be antigenically related to previously isolated peptic fragments of type VI collagen and it shared their unique structure as revealed by electron microscopy. Based on these findings, it was concluded that the isolated material was a form of type VI collagen. In immunofluorescence, the monoclonal antibodies localized type VI collagen throughout the connective tissue and in the extracellular matrix of cultured fibroblasts. Polypeptides presumably comprising the intact form of this collagen were isolated from cultures of metabolically radiolabeled fibroblast cell cultures using the two monoclonal antibodies. The isolated material consisted of two polypeptides of Mr 240,000 and 140,000 that were extensively disulfide cross-linked. Four additional monoclonal antibodies bound the same radioactive polypeptides from fibroblast cultures, but only one of them reacted with the fragments isolated from pepsin-digested placenta. Since all six antibodies were originally selected based on tissue immunofluorescence, and therefore react with the tissue form of the protein, the tissue form appears to be more similar to the polypeptides detected in fibroblast cultures than to the pepsin-resistant fragments. Since these monoclonal antibodies apparently recognize different parts of the molecule, they will be useful for further study of the structure and function of the intact form of type VI collagen.  相似文献   

15.
The seven major desmosomal polypeptides from isolated bovine muzzle desmosomes ranging from Mr 75 000 to 250 000 were separated by gel electrophoresis, isolated and characterized with respect to their amino acid composition and sugar content. The two largest polypeptides (bands 1 and 2), i.e. desmoplakins I and II, are similar in their amino acid composition, confirming our previous immunological and biochemical data, and display a relatively high glycine content. In contrast, the other two cytoplasmic components also believed to be associated with the desmosomal plaque, i.e. polypeptides of bands 5 (Mr 83 000) and 6 (Mr 75 000), differ significantly in their amino acid composition from the desmoplakins and from each other. All four candidate polypeptides for plaque association, i.e. bands 1, 2, 5, and 6, show no significant glycosylation. The glycoproteins 4a and 4b (Mr 115 000 and 130 000) are similar in their amino acid composition, peptide analysis and immunological reactivity. Both are relatively rich in mannose and galactose but also contain sialic acid. Our determinations also indicate that the two polypeptides differ significantly in their N-acetylglucosamine and mannose content. Most, if not all, of the sugar residues are associated with a water-soluble fragment of Mr 15 500 obtained after limited digestion with V8 protease. The glycopolypeptides obtained in band 3 (Mr 164 000-175 000) are distinct from the glycopolypeptides 4a and 4b in amino acid composition, sugar content, isoelectric pH values, certain antigenic determinants and in their pattern of cleavage products obtained by treatment with proteases or cyanogen bromide. The results identify polypeptides of bands 3, 4a and 4b as glycosylated with characteristic sugar compositions. It is suggested that the major glycoproteins (bands 3, 4a, 4b) of the desmosome are integral membrane components arranged in a special way conferring resistance to detergent treatment. The possible roles of these glycoproteins in cell recognition and in adhesive functions of the desmosome are discussed.  相似文献   

16.
H Sage  P Pritzl  P Bornstein 《Biochemistry》1980,19(25):5747-5755
A unique collagen, designated EC, has been isolated from the culture medium of adult bovine aortic endothelial cells. After diethylaminoethylcellulose chromatography of [3H]proline-labeled culture medium, three non-disulfide-bonded bacterial collagenase-sensitive components with apparent Mr of 177000 (EC 1), 125000 (EC 2), and 100000 (EC 3) were demonstrated. Molecular sieve chromatography, cyanogen bromide cleavage, and two-dimensional peptide mapping of radioiodinated EC fragments produced by protease digestion suggest that the lower molecular weight components originate from EC 1. Both EC 1 and EC 2 were digested by pepsin within 10 min to products of less than 60000 molecular weight, under conditions which supported only limited proteolysis of other native collagens. A pepsin-resistant fragment of Mr 50000, derived from a digest of EC 2, contained equal amounts of hydroxyproline and proline, suggesting that at least a portion of the endothelial collagen contains a stable, collagen-like triple helix. Comparative mapping using mast cell protease and cyanogen bromide cleavage, followed by polyacrylamide gel electrophoresis, indicates that the primary structure of this collagen differs from that of other known collagen types.  相似文献   

17.
The heterodimeric structure of factor VIII was demonstrated by two approaches. First, the native molecular weights of several partially purified fractions of factor VIII were determined by measurement of Stokes radii and sedimentation coefficients to be approx. 237 500, 201 000 and 141 000. These measured molecular weights correlated with those derived from polypeptide chain composition, in which each molecule would consist of a doublet polypeptide of Mr 83 000/81 000 plus one predominant high-Mr polypeptide of either 146 000, 120 000 or 93 000. In addition, immunoadsorption using a monoclonal antibody specific for the light-chain doublet removed all of the heavy chains. Separation of the heavy chains from the light chain by EDTA further illustrated the non-covalent nature of the heterodimers. All forms had coagulant activity which was potentiated 13-15-fold by an equimolar amount of human alpha-thrombin. Thrombin converted the Mr 83 000/81 000 doublet to one of Mr 73 000/71 000, and cleaved the largest polypeptides to a transient intermediate form of Mr 93 000 which was further cleaved to polypeptides of Mr 51 000 and 43 000. Potentiation of coagulant activity was correlated with proteolytic cleavage of either or both the doublet and the Mr 93 000 polypeptides. These data indicate that human factor VIII purified from plasma consists of a group of heterodimers, composed of a light chain of Mr 83 000 (81 000) and a heavy chain which varies in size between Mr 170 000 and 93 000, each form of which is similarly potentiated and cleaved by thrombin.  相似文献   

18.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

19.
Foetal-bovine nuchal ligament and aorta, together with adult-bovine aorta and pregnant uterus, were extracted under dissociative conditions in the absence and in the presence of a reducing agent. A collagenous glycoprotein of Mr 140000 [designated component 140K(VI)], identified in these extracts as the major periodate/Schiff-positive component, was shown to be related to collagen type VI. Digestion of non-reduced extracts with pepsin yielded periodate/Schiff-positive peptides that, on the basis of their electrophoretic mobilities, amino acid analyses and peptide 'maps', were identical with type VI collagen fragments prepared by standard procedures. It is concluded that collagen type VI occurs in vivo as molecule comprising three chains of Mr 140000 in which the helical domains account for about one-third of each polypeptide. Biosynthetic experiments with nuchal-ligament fibroblasts in culture demonstrated that a bacterial-collagenase-sensitive [3H]fucose-labelled glycoprotein, Mr 140000, was immunoprecipitated from culture medium by a specific antibody to the pepsin-derived form of collagen type VI. This result suggests that the collagenous polypeptides [140K(VI) components] represent the biosynthetic precursors of type VI collagen that do not undergo processing to smaller species before deposition in the extracellular matrix. Analyses of 5M-guanidinium chloride extracts of tissues with markedly different elastin contents and at different stages of development suggested that there was no relationship between collagen type VI and elastic-fibre microfibrils, a conclusion supported by the observation that the immunoprecipitated glycoprotein, Mr 140000, was distinct from the glycoprotein MFPI, Mr 150000, believed to be a constituent of these microfibrils [Sear, Grant & Jackson (1981) Biochem. J. 194, 587-598].  相似文献   

20.
Cornea absorbs most of daily ultraviolet (UV) light. An excess of UV damages results in not only keratopathy and cataract but also maculopathy. It has been reported that thymosin beta-4 (Tbeta4) promotes wound healing, decreases inflammatory response and prevents apoptosis of corneal epithelial cells. However, it is not clear whether Tbeta4 protects UVB-induced corneal injury, particularly in corneal endothelial cells because of its non-proliferation in nature. The purpose of this study is to compare the protective effects of Tbeta4 on bovine corneal endothelial (BCE) cells from low- and high-dose UVB damage. In this study, 1 microg/ml of Tbeta4 was added to BCE cells 2 h before low (12.5 mj/cm2) or high dosage (100 mj/cm2) UVB exposure. Using a fluorogenic substrate cleavage assay, we found that Tbeta4 diminished the reactive oxygen species level in BCE cells elicited by UVB. However, the protection of viability by Tbeta4 could only be detected under low-dose UVB exposure. Moreover, both caspase-9 activity and annexin V/propidium iodine staining demonstrated that Tbeta4 only protected BCE cells from low-dose UVB-induced apoptosis but not high-dose UVB-induced necrosis. Together, Tbeta4 protected corneal endothelial cells from UVB-induced oxidative stress and apoptosis after low-dose UVB exposure. The results support further investigation towards topical use or anterior chamber injection of this small hydrophilic peptide in treating and preventing UVB-induced corneal endothelial damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号