共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. 总被引:4,自引:0,他引:4
J S Jang D O Kang M J Chun S M Byun 《Biochemical and biophysical research communications》1992,184(1):277-282
The structural gene for a subtilisin J from Bacillus stearothermophilus NCIMB10278 was cloned in Bacillus subtilis using pZ124 as a vector, and its nucleotide sequence was determined. The nucleotide sequence revealed only one large open reading frame, composed of 1,143 base pairs and 381 amino acid residues. A Shine-Dalgarno sequence was found 8 bp upstream from the translation start site (GTG). The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprised of 275 residues. The productivity of subtilisin in the culture broth of the Bacillus subtilis was about 46-fold higher than that of the Bacillus stearothermophilus. The amino acid sequence of the extracellular alkaline protease subtilisin J is highly homologous to that of subtilisin E and it shows 69% identity with subtilisin Carlsberg, 89% with subtilisin BPN' and 70% with subtilisin DY. Some properties of the subtilisin J that had been purified from the Bacillus subtilis were examined. The subtilisin J has alkaline pH characteristics and a molecular weight of 27,500. It retains about 50% of its activity even after treatment at 60 degrees C for 30 min in the presence of 2 mM calcium chloride. 相似文献
2.
《Journal of Fermentation Technology》1988,66(1):13-17
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease. 相似文献
3.
A highly thermostable neutral protease from Bacillus caldolyticus: cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. 总被引:4,自引:0,他引:4 下载免费PDF全文
B van den Burg H G Enequist M E van der Haar V G Eijsink B K Stulp G Venema 《Journal of bacteriology》1991,173(13):4107-4115
By using a gene library of Bacillus caldolyticus constructed in phage lambda EMBL12 and selecting for proteolytically active phages on plates supplemented with 0.8% skim milk, chromosomal B. caldolyticus DNA fragments that specified proteolytic activity were obtained. Subcloning of one of these fragments in a protease-deficient Bacillus subtilis strain resulted in protease proficiency of the host. The nucleotide sequence of a 2-kb HinfI-MluI fragment contained an open reading frame (ORF) that specified a protein of 544 amino acids. This ORF was denoted as the B. caldolyticus npr gene, because the nucleotide and amino acid sequences of the ORF were highly similar to that of the Bacillus stearothermophilus npr gene. Additionally, the size, pH optimum, and sensitivity to the specific Npr inhibitor phosphoramidon of the secreted enzyme indicated that the B. caldolyticus enzyme was a neutral protease. The B. sterothermophilus and B. caldolyticus enzymes differed at only three amino acid positions. Nevertheless, the thermostability and optimum temperature of the B. caldolyticus enzyme were 7 to 8 degrees C higher than those of the B. stearothermophilus enzyme. In a three-dimensional model of the B. stearothermophilus Npr the three substitutions (Ala-4 to Thr, Thr-59 to Ala, and Thr-66 to Phe) were present at solvent-exposed positions. The role of these residues in thermostability was analyzed by using site-directed mutagenesis. It was shown that all three amino acid substitutions contributed to the observed difference in thermostability between the neutral proteases from B. stearothermophilus and B. caldolyticus. 相似文献
4.
Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus stearothermophilus 总被引:20,自引:0,他引:20
The gene (nprM) for the highly thermostable neutral protease of Bacillus stearothermophilus MK232 was cloned in Bacillus subtilis using pTB53 as a vector. The nucleotide sequence of nprM and its flanking regions was determined. The DNA sequence revealed only one large open reading frame, composed of 1656 base pairs and 552 amino acid residues. A Shine-Dalgarno (SD) sequence was found 12 bases upstream from the translation start site (ATG). A possible promotor sequence (TTTTCC for the -35 region and TATTGT for the -10 region), which was nearly identical to the promoter for another thermostable neutral protease gene, nprT, was also found about 40 bases upstream of the SD sequence. The deduced amino acid sequence contained a signal sequence in its amino-terminal region. The sequence of the first five amino acids of purified extracellular protease completely matched residues 237-241 of the open reading frame. This suggests that the enzyme is translated as a large polypeptide containing a pre-pro structure as is known for other neutral proteases. The amino acid sequence of the extracellular form of this protease (316 amino acids, molecular mass 34,266 Da) was identical to that of the thermostable neutral protease (thermolysin) from Bacillus thermoproteolyticus except for two amino acid substitutions (Asp37 to Asn37 and Glu119 to Gln119). The G + C content of the coding region of nprM was 42 mol%, while that of the third letter of the codons was lower (36 mol%). This extremely low content is an exceptional case for genes from thermophiles. When the protease genes, nprM and nprT, were cloned on pTB53 in B. subtilis, the expression of nprM was about 20 times higher than that of nprT. The reason for the difference between the two systems is discussed. 相似文献
5.
Molecular cloning in Bacillus subtilis of a Bacillus licheniformis gene encoding a thermostable alpha amylase 总被引:8,自引:0,他引:8
A resident-plasmid cloning system developed for Bacillus subtilis has been used to isolate recombinant plasmids carrying DNA from Bacillus licheniformis which confer alpha-amylase activity on alpha-amylase-negative mutants of B. subtilis. These plasmids contain a 3550-bp insert at the EcoRI site of the plasmid pBD64. Subcloning various lengths of the B. licheniformis DNA has localised the gene to a 2550-bp BclI fragment. We present evidence that the cloned fragment codes for a B. licheniformis heat-stable alpha-amylase with a temperature optimum of 93 degrees C. The foreign gene is expressed efficiently in B. subtilis and is stably maintained. 相似文献
6.
Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis 总被引:13,自引:0,他引:13
The gene coding for alpha-amylase from Bacillus amyloliquefaciens was isolated by direct shotgun cloning using B. subtilis as a host. The genome of B. amyloliquefaciens was partially digested with the restriction endonuclease MboI and 2- to 5-kb fragments were isolated and joined to plasmid pUB110. Competent B. subtilis amylase-negative cells were transformed with the hybrid plasmids and kanamycin-resistant transformants were screened for the production of alpha-amylase. One of the transformants producing high amounts of alpha-amylase was characterized further. The alpha-amylase gene was shown to be present in a 2.3-kb insert. The alpha-amylase production of the transformed B. subtilis could be prevented by inserting lambda DNA fragments into unique sites of EcoRI, HindIII and KpnI in the insert. Foreign DNA inserted into a unique ClaI site failed to affect the alpha-amylase production. The amount of alpha-amylase activity produced by this transformed B. subtilis was about 2500-fold higher than that for the wild-type B. subtilis Marburg strain, and about 5 times higher than the activity produced by the donor B. amyloliquefaciens strain. Virtually all of the alpha-amylase was secreted into the culture medium. The secreted alpha-amylase was shown to be indistinguishable from that of B. amyloliquefaciens as based on immunological and biochemical criteria. 相似文献
7.
Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. 总被引:8,自引:1,他引:8 下载免费PDF全文
We have cloned from Bacillus subtilis a novel protease gene (nprB) encoding a neutral protease by using a shotgun cloning approach. The gene product was determined to have a molecular mass of 60 kDa. It has a typical signal peptide-like sequence at the N-terminal region. The expression of nprB can be stimulated by using a B. subtilis strain, WB30, carrying a sacU(h)h mutation. Expression of this protease gene results in production of a 37-kDa protease in the culture medium. The first five amino acid residues from the N terminus of the mature protease were determined to be Ala-Ala-Gly-Thr-Gly. This indicates that the protease is synthesized in a preproenzyme form. The purified protease has a pH optimum of around 6.6, and its activity can be inhibited by EDTA, 1,10-phenanthroline (a zinc-specific chelator), and dithiothreitol. It retained 65% of its activity after treatment at 65 degrees C for 20 min. Sequence comparison indicates that the mature form of this protease has 66% homology with the two thermostable neutral proteases from B. thermoproteolyticus and B. stearothermophilus. It also shares 65, 61, and 56% homology with the thermolabile neutral proteases from B. cereus, B. amyloliquefaciens, and B. subtilis, respectively. The zinc-binding site and the catalytic residues are all conserved among these proteases. Sequence homology extends into the "propeptide" region. The nprB gene was mapped between metC and glyB and was not required for growth or sporulation. 相似文献
8.
Abstract Bacillus stearothermophilus DNA fragments containing a promoter were isolated in Escherichia coli using a shuttle promoter-probe vector. The molecular sizes of the isolated fragments ranged from 0.78 to 10 kb. The 0.78 and 1.1 kb fragments were selected and examined in some detail for promoter activity in both E. coli and Bacillus subtilis by analysis of expression of erythromycin-resistance (Emr ) and β-galactosidase. The results showed that the two fragments exhibit a high promoter activity in both bacteria. In vitro promoter activity of the 1.1 kb fragment was also shown by RNA syntheses catalyzed by RNA polymerases prepared from E. coli, B. subtilis and B. stearothermophilus . 相似文献
9.
The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃. 相似文献
10.
Takao M Yamaguchi A Yoshikawa K Terashita T Sakai T 《Bioscience, biotechnology, and biochemistry》2002,66(2):430-433
The gene that encodes a thermostable endo-arabinase (called ABN-TS) from Bacillus thermodenitrificans TS-3 was cloned, sequenced, and expressed in the mesophilic B. subtilis. The gene contained an open reading frame consists of 939 bp, which encodes 313 amino acids. The deduced amino acid sequence of the enzyme showed 50, 46, and 36% similarity with endo-arabinase from B. subtilis IFO 3134 (PPase-C), Pseudomonas fluorescens (ArbA), and Aspergillus niger (ABNA), respectively. The hydrophobic and acidic amino acids making up ABN-TS outnumbered those in PPase-C. The gene product expressed in B. subtilis, as the host, had substantially the same characteristics, and was stable up to 70 degrees C, and the reaction was optimal around 70 degrees C, as well as native ABN-TS. 相似文献
11.
The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ . 相似文献
12.
New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. 总被引:4,自引:5,他引:4 下载免费PDF全文
A new type of pullulanase which mainly produced panose from pullulan was found in Bacillus stearothermophilus and purified. The enzyme can hydrolyze pullulan efficiently and only hydrolyzes a small amount of starch. When pullulan was used as a substrate, the main product was panose and small amounts of glucose and maltose were simultaneously produced. By using pTB522 as a vector plasmid, the enzyme gene was cloned and expressed in Bacillus subtilis. Since the enzyme from the recombinant plasmid carrier could convert pullulan into not only panose but also glucose and maltose, we concluded that these reactions were due to the single enzyme. The new pullulanase, with a molecular weight of 62,000, was fairly thermostable. The optimum temperature was 60 to 65 degrees C, and about 90% of the enzyme activity was retained even after treatment at 60 degrees C for 60 min. The optimum pH for the enzyme was 6.0. 相似文献
13.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified. 相似文献
14.
Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis. 总被引:9,自引:18,他引:9 下载免费PDF全文
A thermophilic bacterium Bacillus stearothermophilus IFO 12550 (ATCC 12980) was transformed with each of the following plasmids, pUB110 (kanamycin resistance, Kmr), pTB19 (Kmr and tetracycline resistance [Tcr]), and its derivative pTB90 (Kmr Tcr), by the protoplast procedure in the presence of polyethylene glycol at 48 degrees C. The transformation frequencies per regenerant for pUB110, pTB19, and pTB90 were 5.9 x 10(-3), 5.5 x 10(-3), and 2.0 x 10(-1), respectively. Among these plasmids, pTB90 was newly derived, and the restriction endonuclease cleavage map was constructed. When tetracycline (5 micrograms/ml) was added into the culture medium, the copy number of pTB90 in B. stearothermophilus was about fourfold higher than that when kanamycin (5 micrograms/ml) was added instead of tetracycline. Bacillus subtilis could also be transformed with the plasmids extracted from B. stearothermophilus and vice versa. Accordingly, pUB110, pTB19, and pTB90 served as shuttle vectors between B. stearothermophilus and B. subtilis. The requirements for replication of pTB19 in B. subtilis and B. stearothermophilus appear to be different, because some deletion plasmids (pTB51, pTB52, and pTB53) derived from pTB19 could replicate only in B. subtilis, whereas another deletion plasmid pTB92 could replicate solely in B. stearothermophilus. Plasmids pTB19 and pTB90 could be maintained and expressed in B. stearothermophilus up to 65 degrees C, whereas the expression of pUB110 in the same strain was up to 55 degrees C. 相似文献
15.
Hideto Takami Tetsuo Kobayashi Rikizo Aono Koki Horikoshi 《Applied microbiology and biotechnology》1992,38(1):101-108
Summary Alkaliphilic Bacillus sp. no. AH-101 produces an extremely thermostable alkaline serine protease that has a high optimum pH (pH 12–13) and shows keratinolytic activity. The gene encoding this protease was cloned in Escherichia coli and expressed in B. subtilis. The cloned protease was identical to the AH-101 protease in its optimum pH and thermostability at high alkaline pH. An open reading frame of 1083 bases, identified as the protease gene, was preceded by a putative Shine-Dalgarno sequence (AAAGGAGG) with a spacing of 11 bases. The deduced amino acid sequence revealed a pre-pro-peptide of 93 residues followed by the mature protease comprising 268 residues. AH-101 protease showed slightly higher homology to alkaline proteases from alkaliphilic bacilli (61.2% and 65.3%) than to those from neutrophilic bacilli (54.9–56.7%). Also AH-101 protease and other proteases from alkaliphilic bacilli shared common amino acid changes and a four amino acid deletion when compared to the proteases from neutrophilic bacilli. AH-101 protease, however, was distinct among the proteases from alkaliphilic bacilli in showing the lowest homology to the others.Correspondence to: H. Takami 相似文献
16.
17.
Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. 总被引:14,自引:17,他引:14 下载免费PDF全文
The thermostable neutral protease gene nprT of Bacillus stearothermophilus was sequenced. The DNA sequence revealed only one large open reading frame, composed of 1,644 bases and 548 amino acid residues. A Shine-Dalgarno sequence was found 9 bases upstream from the translation start site (ATG), and the deduced amino acid sequence contained a signal sequence in its amino-terminal region. The sequence of the first 14 amino acids of purified extracellular protease completely matched that deduced from the DNA sequence starting at GTC (Val), 687 bases (229 amino acids) downstream from ATG. This suggests that the protease is translated as a longer polypeptide. The amino acid sequence of the extracellular form of this protease (319 amino acids) was highly homologous to that of the thermostable neutral protease from Bacillus thermoproteolyticus but less homologous to the thermolabile neutral protease from Bacillus subtilis. A promoter region determined by S1 nuclease mapping (TTTTCC for the -35 region and TATTTT for the -10 region) was different from the conserved promoter sequences recognized by the known or factors in bacilli. However, it was very homologous to the promoter sequence of the spo0B gene from B. subtilis. The guanine-plus-cytosine content of the coding region of the nprT gene was 58 mol%, while that of the third letter of the codons was much higher (72 mol%). 相似文献
18.
Molecular cloning of heterologous chromosomal DNA by recombination between a plasmid vector and a homologous resident plasmid in Bacillus subtilis 总被引:28,自引:0,他引:28
Summary The difficulty experienced in the shotgun cloning of chromosomal DNA on plasmid vectors in Bacillus subtilis is analyzed and an explanation for this difficulty is offered based on an inherent property of competent cells which imposes a requirement of plasmid multimers in transformation of plasmidfree recipients (Canosi et al., 1978). A stratagem which uses cloning by recombination between the vector and a resident homologous plasmid is tested and shown to be successful. Several recombinant plasmids are obtained containing Bacillus licheniformis DNA fragments which complement aromatic amino acid mutants of Bacillus subtilis. The yield of recombinant clones ranges from 6.7 to 210 per g of chromosomal DNA, depending on the selection and the restriction endonuclease. The various trp clones obtained after cutting chromosomal DNA with BglII and BclI do not complement trpE and exhibit both orientations with respect to the vector. The location of several restriction endonuclease cleavage sites in the cloned trp fragments is presented, and their relationship to the genetic map of Bacillus licheniformis is described.Abbreviations Km
kanamycin
- Cm
chloramphenicol
- Em
erythromycin
- CCC
covalently closed circular
- OC
open circular
-
resistant
- MDal
megadalton
In partial fulfillment of the requirements for the doctoral degree in the Department of Microbiology at the New York University School of Medicine, for S.C. 相似文献
19.
A highly thermostable neutral protease was found in culture filtrates ofBacillus stearothermophilus. The optimum reaction pH and temperature of this protease were 6.0 and 60°C, respectively, and 90% activity remained even after heat treatment at 90°C for 30 min. The protease was markedly inactivated by diisopropyl fluorophosphate, but EDTA and iodoacetic acid hardly affected it. The neutral protease therefore could be defined as a highly thermostable, neutral(-serine) protease. 相似文献
20.
J. A. K. W. Kiel J. M. Boels G. Beldman G. Venema 《Molecular & general genetics : MGG》1991,230(1-2):136-144
Summary The structural gene for the Bacillus stearothermophilus glycogen branching enzyme (glgB) was cloned in Escherichia coli. Nucleotide sequence analysis revealed a 1917 nucleotide open reading frame (ORF) encoding a protein with an Mr of 74787 showing extensive similarity to other bacterial branching enzymes, but with a shorter N-terminal region. A second ORF of 951 nucleotides encoding a 36971 Da protein started upstream of the glgB gene. The N-terminus of the ORF2 gene product had similarity to the Alcaligenes eutrophus czcD gene, which is involved in cobalt-zinc-cadmium resistance. The B. stearothermophilus glgB gene was preceded by a sequence with extensive similarity to promoters recognized by Bacillus subtilis RNA polymerase containing sigma factor H (E - H). The glgB promoter was utilized in B. subtilis exclusively in the stationary phase, and only transcribed at low levels in B. subtilis spoOH, indicating that sigma factor H was essential for the expression of the glgB gene in B. subtilis. In an expression vector, the B. stearothermophilus glgB gene directed the synthesis of a thermostable branching enzyme in E. coli as well as in B. subtilis, with optimal branching activity at 53° C. 相似文献