首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

2.
Voltage-activated cation channels have pores that are selective for K(+), Na(+) or Ca(2+). Neurons use these channels to generate and propagate action potentials, release neurotransmitters at synaptic terminals and integrate incoming signals in dendrites. Recent X-ray and electron microscopy studies of an archaebacterial voltage-activated K(+) (Kv) channel have provided the first atomic resolution images of the voltage-sensing domains in Kv channels. Although these structures are consistent with previous biophysical analyses of eukaryotic channels, they also contain surprises, which have provoked new ideas about the structure and movements of these proteins during gating. This review summarizes our current understanding of these intriguing membrane proteins and highlights the open questions.  相似文献   

3.
Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM).KEY WORDS: crystallization, degradation, eutectic mixture, Raman spectroscopy, thermal analysis  相似文献   

4.
Crystal structures of potassium channels have strongly corroborated an earlier hypothetical picture based on functional studies, in which the channel gate was located on the cytoplasmic side of the pore. However, accessibility studies on several types of ligand-sensitive K(+) channels have suggested that their activation gates may be located near or within the selectivity filter instead. It remains to be determined to what extent the physical location of the gate is conserved across the large K(+) channel family. Direct evidence about the location of the gate in large conductance calcium-activated K(+) (BK) channels, which are gated by both voltage and ligand (calcium), has been scarce. Our earlier kinetic measurements of the block of BK channels by internal quaternary ammonium ions have raised the possibility that they may lack a cytoplasmic gate. We show in this study that a synthesized Shaker ball peptide (ShBP) homologue acts as a state-dependent blocker for BK channels when applied internally, suggesting a widening at the intracellular end of the channel pore upon gating. This is consistent with a gating-related conformational change at the cytoplasmic end of the pore-lining helices, as suggested by previous functional and structural studies on other K(+) channels. Furthermore, our results from two BK channel mutations demonstrate that similar types of interactions between ball peptides and channels are shared by BK and other K(+) channel types.  相似文献   

5.
Engel D  Jonas P 《Neuron》2005,45(3):405-417
Action potentials in central neurons are initiated near the axon initial segment, propagate into the axon, and finally invade the presynaptic terminals, where they trigger transmitter release. Voltage-gated Na(+) channels are key determinants of excitability, but Na(+) channel density and properties in axons and presynaptic terminals of cortical neurons have not been examined yet. In hippocampal mossy fiber boutons, which emerge from parent axons en passant, Na(+) channels are very abundant, with an estimated number of approximately 2000 channels per bouton. Presynaptic Na(+) channels show faster inactivation kinetics than somatic channels, suggesting differences between subcellular compartments of the same cell. Computational analysis of action potential propagation in axon-multibouton structures reveals that Na(+) channels in boutons preferentially amplify the presynaptic action potential and enhance Ca(2+) inflow, whereas Na(+) channels in axons control the reliability and speed of propagation. Thus, presynaptic and axonal Na(+) channels contribute differentially to mossy fiber synaptic transmission.  相似文献   

6.
Ionotropic glutamate receptors belong to the superfamily of P-loop channels as well as K(+), Na(+), and Ca(2+) channels. However, the structural similarity between ion channels of the glutamate receptors and K(+) channels is a matter of discussion. The aim of this study was to analyze differences between the structures of K(+) channels and glutamate receptor channels. For this purpose, homology models of NMDA and AMPA receptor channels (M2 and M3 segments) were built using X-ray structures of K(+) channels as templates. The models were optimized and used to reproduce specific data on the structure of glutamate receptor channels. Particular attention was paid to the data of the binding of channel blockers and to the results of scanning mutagenesis. The modeling demonstrates that properties of glutamate receptor channel can be reproduced assuming only local structural deformations of the K(+) channel templates. The most valuable differences were found in the selectivity-filter region, whereas helical parts of M2 and M3 segments could have similar spatial organization with homologous segments in K(+) channels. It is concluded that the current experimental data on glutamate receptor channels does not reveal global structural differences with K(+) channels.  相似文献   

7.
The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which are crucial in the activation of human effector memory T cells (T(EM)); selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. The critical motif on the toxin for potassium channel blockade consists of neighboring lysine and tyrosine residues. Because this motif is sufficient for activity, an ShK analogue was designed based on D-amino acids. D-allo-ShK has a structure essentially identical with that of ShK and is resistant to proteolysis. It blocked Kv1.3 with K(d) 36 nm (2,800-fold lower affinity than ShK), was 2-fold selective for Kv1.3 over Kv1.1, and was inactive against other K(+) channels tested. D-allo-ShK inhibited human T(EM) cell proliferation at 100-fold higher concentration than ShK. Its circulating half-life was only slightly longer than that of ShK, implying that renal clearance is the major determinant of its plasma levels. D-allo-ShK did not bind to the closed state of the channel, unlike ShK. Models of D-allo-ShK bound to Kv1.3 show that it can block the pore as effectively as ShK but makes different interactions with the vestibule, some of which are less favorable than for native ShK. The finding that an all-D analogue of a polypeptide toxin retains biological activity and selectivity is highly unusual. Being resistant to proteolysis and nonantigenic, this analogue should be useful in K(+) channel studies; all-d analogues with improved Kv1.3 potency and specificity may have therapeutic advantages.  相似文献   

8.
Complex I (NADH:ubiquinone oxidoreductase) is the largest protein complex of bacterial and mitochondrial respiratory chains. The first three-dimensional structure of bacterial complex I in vitrified ice was determined by electron cryo-microscopy and single particle analysis. The structure of the Escherichia coli enzyme incubated with either NAD(+) (as a reference) or NADH was calculated to 35 and 39 A resolution, respectively. The X-ray structure of the peripheral arm of Thermus thermophilus complex I was docked into the reference EM structure. The model obtained indicates that Fe-S cluster N2 is close to the membrane domain interface, allowing for effective electron transfer to membrane-embedded quinone. At the current resolution, the structures in the presence of NAD(+) or NADH are similar. Additionally, side-view class averages were calculated for the negatively stained bovine enzyme. The structures of bovine complex I in the presence of either NAD(+) or NADH also appeared to be similar. These observations indicate that conformational changes upon reduction with NADH, suggested to occur by a range of studies, are smaller than had been thought previously. The model of the entire bacterial complex I could be built from the crystal structures of subcomplexes using the EM envelope described here.  相似文献   

9.
Magidovich E  Yifrach O 《Biochemistry》2004,43(42):13242-13247
Ion channels open and close their pore in a process called gating. On the basis of crystal structures of two voltage-independent K(+) channels, KcsA and MthK, a conformational change for gating has been proposed whereby the inner helix bends at a glycine hinge point (gating hinge) to open the pore and straightens to close it. Here we ask if a similar gating hinge conformational change underlies the mechanics of pore opening of two eukaryotic voltage-dependent K(+) channels, Shaker and BK channels. In the Shaker channel, substitution of the gating hinge glycine with alanine and several other amino acids prevents pore opening, but the ability to open is recovered if a secondary glycine is introduced at an adjacent position. A proline at the gating hinge favors the open state of the Shaker channel as if by preventing inner helix straightening. In BK channels, which have two adjacent glycine residues, opening is significantly hindered in a graded manner with single and double mutations to alanine. These results suggest that K(+) channels, whether ligand- or voltage-dependent, open when the inner helix bends at a conserved glycine gating hinge.  相似文献   

10.
The design of proteins that self-assemble into well-defined, higher order structures is an important goal that has potential applications in synthetic biology, materials science, and medicine. We previously designed a two-component protein system, designated A-(+) and A-(−), in which self-assembly is mediated by complementary electrostatic interactions between two coiled-coil sequences appended to the C-terminus of a homotrimeric enzyme with C3 symmetry. The coiled-coil sequences are attached through a short, flexible spacer sequence providing the system with a high degree of conformational flexibility. Thus, the primary constraint guiding which structures the system may assemble into is the symmetry of the protein building block. We have now characterized the properties of the self-assembling system as a whole using native gel electrophoresis and analytical ultracentrifugation (AUC) and the properties of individual assemblies using cryo-electron microscopy (EM). We show that upon mixing, A-(+) and A-(−) form only six different complexes in significant concentrations. The three predominant complexes have hydrodynamic properties consistent with the formation of heterodimeric, tetrahedral, and octahedral protein cages. Cryo-EM of size-fractionated material shows that A-(+) and A-(−) form spherical particles with diameters appropriate for tetrahedral or octahedral protein cages. The particles varied in diameter in an almost continuous manner suggesting that their structures are extremely flexible.  相似文献   

11.
Lee WW  Shin MS  Kang Y  Lee N  Jeon S  Kang I 《Cytokine》2012,58(3):332-335
The IL-7 receptor alpha (IL-7Rα) is the high affinity receptor for IL-7 which is essential for T cell homeostasis. We recently reported an age-associated expansion of human effector memory (EM) CD8(+) T cells expressing IL-7Rα low (IL-7Rα(low)), which could be detrimental to hosts by occupying "immunological space". We investigated the potential mechanisms for this phenomenon, focusing on cytomegalovirus (CMV) infection and INF-α. In the elderly (age ≥ 65), CMV infection was associated with a decreased frequency of na?ve CD8(+) T cells as well as with an increased frequency of total EM and IL-7Rα(low) EM CD8(+) T cells. However, in the young (age ≤ 40), this viral infection was associated only with an increased frequency of IL-7Rα(low) EM CD8(+) T cells. There was no association found between CMV immune status and plasma levels of IFN-α. In CMV-infected young and elderly people, INF-α levels had no correlation with the frequency of IL-7Rα(low) EM CD8(+) T cells although this cytokine levels correlated with the frequency of IL-7Rα(low) CD45RA(+) EM CD8(+) T cells in CMV-uninfected elderly people. Our findings suggest that the effect of CMV infection on the frequency of CD8(+) T cell subsets may begin with IL-7Rα(low) EM CD8(+) T cells and spread to other subsets with aging. Also, IFN-α could be associated with the expansion of IL-7Rα(low) CD45RA(+) EM CD8(+) T cells in the CMV-uninfected elderly.  相似文献   

12.
Intrapulmonary veins (PVs) contribute to pulmonary vascular resistance, but the mechanisms controlling PV tone are poorly understood. Although smooth muscle cell (SMC) K(+) channels regulate tone in most vascular beds, their role in PV tone is unknown. We show that voltage-gated (K(V)) and inward rectifier (K(ir)) K(+) channels control resting PV tone in the rat. PVs have a coaxial structure, with layers of cardiomyocytes (CMs) arrayed externally around a subendothelial layer of typical SMCs, thus forming spinchterlike structures. PVCMs have both an inward current, inhibited by low-dose Ba(2+), and an outward current, inhibited by 4-aminopyridine. In contrast, PVSMCs lack inward currents, and their outward current is inhibited by tetraethylammonium (5 mM) and 4-aminopyridine. Several K(V), K(ir), and large-conductance Ca(2+)-sensitive K(+) channels are present in PVs. Immunohistochemistry showed that K(ir) channels are present in PVCMs and PV endothelial cells but not in PVSMCs. We conclude that K(+) channels are present and functionally important in rat PVs. PVCMs form sphincters rich in K(ir) channels, which may modulate venous return both physiologically and in disease states including pulmonary edema.  相似文献   

13.
K(+) channels play essential roles in regulating membrane excitability of many diverse cell types by selectively conducting K(+) ions through their pores. Many diverse molecules can plug the pore and modulate the K(+) current. Quaternary ammonium (QA) ions are a class of pore blockers that have been used for decades by biophysicists to probe the pore, leading to important insights into the structure-function relation of K(+) channels. However, many key aspects of the QA-blocking mechanisms remain unclear to date, and understanding these questions requires high resolution structural information. Here, we address the question of whether intracellular QA blockade causes conformational changes of the K(+) channel selectivity filter. We have solved the structures of the KcsA K(+) channel in complex with tetrabutylammonium (TBA) and tetrabutylantimony (TBSb) under various ionic conditions. Our results demonstrate that binding of TBA or TBSb causes no significant change in the KcsA structure at high concentrations of permeant ions. We did observe the expected conformational change of the filter at low concentration of K(+), but this change appears to be independent of TBA or TBSb blockade.  相似文献   

14.
Memory T cells can be divided into effector memory (T(EM)) and central memory (T(CM)) subsets based on their effector function and homing characteristics. Although previous studies have demonstrated that TCR and cytokine signals mediate the generation of the two memory subsets of CD8(+) T cells, the mechanisms for generation of the CD4(+) T(EM) and T(CM) cell subsets are unknown. We found that OX40-deficient mice showed a marked reduction in the number of CD4(+) T(EM) cells, whereas the number of CD4(+) T(CM) cells was normal. Adoptive transfer experiments using Ag-specific CD4(+) T cells revealed that OX40 signals during the priming phase were indispensable for the optimal generation of the CD4(+) T(EM), but not the CD4(+) T(CM) population. In a different transfer experiment with in vitro established CD4(+)CD44(high)CD62L(low) (T(EM) precursor) and CD4(+)CD44(high)CD62L(high) (T(CM) precursor) subpopulations, OX40-KO T(EM) precursor cells could not survive in the recipient mice, whereas wild-type T(EM) precursor cells differentiated into both T(EM) and T(CM) cells. In contrast, T(CM) precursor cells mainly produced T(CM) cells regardless of OX40 signals, implying the dispensability of OX40 for generation of T(CM) cells. Nevertheless, survival of OX40-KO T(EM) cells was partially rescued in lymphopenic mice. During in vitro recall responses, the OX40-KO T(EM) cells that were generated in lymphopenic recipient mice showed impaired cytokine production, suggesting an essential role for OX40 not only on generation but also on effector function of CD4(+) T(EM) cells. Collectively, the present results indicate differential requirements for OX40 signals on generation of CD4(+) T(EM) and T(CM) cells.  相似文献   

15.
A fundamental question associated with the function of ion channels is the conformational changes that allow for reversibly opening/occluding the pore through which the cations permeate. The recently elucidated crystal structures of potassium channels reveal similar structural motifs at their pore-forming regions, suggesting that they share a common gating mechanism. The validity of this hypothesis is explored by analyzing the collective dynamics of five known K(+) channel structures. Normal-mode analysis using the Gaussian network model strikingly reveals that all five structures display the same intrinsic motions at their pore-forming region despite the differences in their sequences, structures, and activation mechanisms. Superposition of the most cooperative mode profiles shows that the identified common mechanism is a global corkscrew-like counterrotation of the extracellular and cytoplasmic (CP) regions, leading to the opening of the CP end of the pore. A second cooperative mode shared by all five K(+) channels is the extension of the extracellular and/or CP ends via alternating anticorrelated fluctuations of pairs of diagonally opposite monomers. Residues acting as hinges/anchors in both modes are highly conserved across the members of the family of K(+) channel proteins, consistent with their presently disclosed critical mechanical role in pore gating.  相似文献   

16.
A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4(+) T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM)) and/or central memory (T(CM)) CD4(+) T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM) and T(CM) cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+) T(E/EM) cells and of CD4(+) T(CM) cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+) T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+) T(E/EM) cells and of CD4(+) T(E/EM) cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM) and T(CM) cells are major producers of IL-2.  相似文献   

17.
Voltage-gated K(+) channels are dynamic macromolecular machines that open and close in response to changes in membrane potential. These multisubunit membrane-embedded proteins are responsible for governing neuronal excitability, maintaining cardiac rhythmicity, and regulating epithelial electrolyte homeostasis. High resolution crystal structures have provided snapshots of K(+) channels caught in different states with incriminating molecular detail. Nonetheless, the connection between these static images and the specific trajectories of K(+) channel movements is still being resolved by biochemical experimentation. Electrophysiological recordings in the presence of chemical modifying reagents have been a staple in ion channel structure/function studies during both the pre- and post-crystal structure eras. Small molecule tethering agents (chemoselective electrophiles linked to ligands) have proven to be particularly useful tools for defining the architecture and motions of K(+) channels. This Minireview examines the synthesis and utilization of chemical tethering agents to probe and manipulate the assembly, structure, function, and molecular movements of voltage-gated K(+) channel protein complexes.  相似文献   

18.
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.  相似文献   

19.
Neuronal voltage-dependent K(+) channels of the delayed rectifier type consist of multiple Kv alpha subunit variants, which assemble as hetero- or homotetramers, together with four Kv beta auxiliary subunits. Direct structural information on these proteins has not been forthcoming due to the difficulty in isolating the native K(+) channels. We have overexpressed the subunit genes in the yeast Pichia pastoris. The Kv1.2 subunit expressed alone is shown to fold into a native conformation as determined by high-affinity binding of 125I-labelled alpha-dendrotoxin, while co-expressed Kv1.2 and Kv beta 2 subunits co-assembled to form native-like oligomers. Sites of post-translational modifications causing apparent heterogeneity on SDS-PAGE were identified by site-directed mutagenesis. Engineering to include affinity tags and scale-up of production by fermentation allowed routine purification of milligram quantities of homo- and heteroligomeric channels. Single-particle electron microscopy of the purified channels was used to generate a 3D volume to 2.1 nm resolution. Protein domains were assigned by fitting crystal structures of related bacterial proteins. Addition of exogenous lipid followed by detergent dialysis produced well-ordered 2D crystals that exhibited mostly p12(1) symmetry. Projection maps of negatively stained crystals show the constituent molecules to be 4-fold symmetric, as expected for the octameric K(+) channel complex.  相似文献   

20.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号