首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.  相似文献   

2.
Xu S  Lin B 《Biophysical journal》2001,81(4):2403-2413
Atherosclerosis is a disease initiated by lipoprotein aggregation and deposition in artery walls. In this study, the de novo low-density lipoprotein aggregation process was examined. Nine major intermediates were identified in two stages of the aggregation process. In the aggregation stage, low-density lipoprotein molecules aggregate and form nucleation units. The nucleation units chain together and form linear aggregates. The linear aggregates branch and interact with one another, forming fractals. In the fusion stage, spatially adjacent nucleation units in the fractal fuse into curved membrane surfaces, which, in turn, fuse into multilamellar or unilamellar vesicles. Alternatively, some adjacent nucleation units in the fractals assemble in a straight line and form rods. Subsequently, the rods flatten out into rough and then into smooth ribbons. Occasionally, tubular membrane vesicles are formed from the fractals. The aggregation stage seems to be analogous to colloidal aggregation and amyloid fiber formation. The fusion stage seems to be characteristic of the lipid-rich lipoproteins and is beyond colloidal aggregation and amyloid fiber formation.  相似文献   

3.
4.
Aggregation is an ancient threat that must be overcome by proteins from all organisms to maintain their native functional states. This is essential for the maintenance of metabolic flux and viability of their cellular machineries. Here, we compare the aggregation-resistance strategies adapted by the thermophilic proteins and their mesophilic homologs using a dataset of 373 protein families. Like their mesophilic homologs, the thermophilic protein sequences also contain potential aggregation prone regions (APRs), capable of forming cross-β motif and amyloid-like fibrils. Tetrapeptide and hexapeptide amyloid-like fibril forming sequence patterns and experimentally proven amyloid-like fibril forming peptide sequences were also detected in the thermophilic proteins. Both the thermophilic and the mesophilic proteins use similar strategies to resist aggregation. However, the thermophilic proteins show superior utilization of these strategies. The thermophilic protein monomers show greater ability to "stow away" the APRs in the hydrophobic cores to protect them from solvent exposure. The thermophilic proteins are also better at gatekeeping the APRs by surrounding them with charged residues (Asp, Glu, Lys, and Arg) and Pro to a greater extent. While thermophilic and mesophilic proteins in our dataset are highly homologous and show strong overall sequence conservation, the APRs are not conserved between the homologs. These findings indicate that evolution is working to avoid amyloidogenic regions in proteins. Our results are also consistent with the observation that thermophilic cells often accumulate small molecule osmolytes capable of stabilizing their proteins and other macromolecules. This study has important implications for rational design and formulation of therapeutic proteins and antibodies.  相似文献   

5.
Lewi Stone  Alan Roberts 《Oecologia》1992,91(3):419-424
Summary There is a long-standing dispute over whether the analysis of species co-occurrence data, typically on islands in an archipelago, can disclose the forces at work in structuring a community. Here we present and utilise three scores S, C and T. S gives the mean number of islands shared by a species pair in the presence/absence data under study. The scores C and T are based on the way that a pair of species occurs on a pair of islands. When each species occurs on a different island, this adds to the checkerboard score C; if they occupy the same island, this increases the togetherness score T.In judging whether observed values of S, C and T are compatible with a null hypothesis assuming no species interaction, we follow Connor and Simberloff (1979) in generating a control group of (constrained) simulated incidence patterns.Presence/absence matrices can have paradoxical features, in combining a high mutual exclusion by species (checkerboardedness) with a degree of species aggregation that is also high. We show that this is in fact inevitable — that, given the usual contraints, C and T can differ only by a constant. This means that extreme checkerboardedness can be produced by forces making for species aggregation, just as well as by those making for avoidance.If we restrict our attention to a subset of species, the constraints are less rigid and the S, C and T scores are somewhat freer to vary. We consider the confamilial subsets in the Vanuatu archipelago as likely candidates for revealing any competition forces at work. Calculating the actual S, C and T scores for these subsets, we compare them with the corresponding scores in a sample of simulated colonization patterns.The actual species-distributions differ significantly from what we would expect if the colonization choices of different species were uncorrelated (save for some biological constraints). The confamilial species of the real world share more islands, and occur in a pattern less checkerboarded, and more aggregated, than their simulation counterparts. This suggests that competition pressures, if they exist, are overcome by countervailing factors.The method used is applicable in other ways, and to a wider class of problems, in analysing the forces behind community structure.  相似文献   

6.
Triggers for microbial aggregation in activated sludge?   总被引:10,自引:0,他引:10  
 Microbial aggregation into good settling sludge is essential for the well-functioning of activated sludge systems treating waste water. Complete aggregation of all the microbial biomass formed has been proven to be difficult to maintain continuously, resulting in wash-out of suspended solids. This review investigates the possibility that environmental signals could constitute triggers for the induction or stimulation of aggregative physiology. Received: 24 August 1995/Accepted: 7 September 1995  相似文献   

7.
We present an analysis of the conformational and aggregative properties of an Aβ concatemer (Con-Alz) of interest for vaccine development against Alzheimer's disease. Con-Alz consists of 3 copies of the 43 residues of the Aβ peptide separated by the P2 and P30 T-cell epitopes from the tetanus toxin. Even in the presence of high concentrations of denaturants or fluorinated alcohols, Con-Alz has a very high propensity to form aggregates which slowly coalesce over time with changes in secondary, tertiary and quaternary structure. Only micellar concentrations of SDS were able to inhibit aggregation. The increase in the ability to bind the fibril-binding dye ThT increases without lag time, which is characteristic of relatively amorphous aggregates. Confirming this, electron microscopy reveals that Con-Alz adopts a morphology resembling truncated protofibrils after prolonged incubation, but it is unable to assemble into classical amyloid fibrils. Despite its high propensity to aggregate, Con-Alz does not show any significant ability to permeabilize vesicles, which for fibrillating proteins is taken to be a key factor in aggregate cytotoxicity and is attributed to oligomers formed at an early stage in the fibrillation process. Physically linking multiple copies of the Aβ-peptide may thus sterically restrict Con-Alz against forming cytotoxic oligomers, forcing it instead to adopt a less well-organized assembly of intermeshed polypeptide chains.  相似文献   

8.
Using steady-state, polarized, and phase-modulation fluorometry, the dithiothreitol-induced denaturation of insulin and formation of its complex with alpha-crystallin in solution were studied. Prevention of the aggregation of insulin by alpha-crystallin is due to formation of chaperone complexes, i.e. interaction of chains of the denatured insulin with alpha-crystallin. The conformational changes in alpha-crystallin that occur during complex formation are rather small. It is unlikely that N-termini are directly involved in the complex formation. The 8-anilino-1-naphthalenesulfonate (ANS) is not sensitive to the complex formation. ANS emits mainly from alpha-crystallin monomers, dimers, and tetramers, but not from oligomers or aggregates. The possibility of highly sensitive detection of aggregates by light scattering using a spectrofluorometer with crossed monochromators is demonstrated.  相似文献   

9.
Several neurodegenerative disorders are characterized by the accumulation of proteinaceous inclusions in the central nervous system. These inclusions are frequently composed of a mixture of aggregation-prone proteins. Here, we used a bimolecular fluorescence complementation assay to study the initial steps of the co-aggregation of huntingtin (Htt) and α-synuclein (α-syn), two aggregation-prone proteins involved in Huntington's disease (HD) and Parkinson's disease (PD), respectively. We found that Htt (exon 1) oligomerized with α-syn and sequestered it in the cytosol. In turn, α-syn increased the number of cells displaying aggregates, decreased the number of aggregates per cell and increased the average size of the aggregates. Our results support the idea that co-aggregation of aggregation-prone proteins can contribute to the histopathology of neurodegenerative disorders.  相似文献   

10.
Conversion of soluble peptides and proteins into amyloid fibrils and/or intermediate oligomers is believed to be the central event in the pathogenesis of most human neurodegenerative diseases, including Parkinson’s disease (PD). Here we describe the modulating effect of filamentous phages on aggregation of α-synuclein (AS) in vitro and in a PD cellular model. Filamentous phages, well understood at both structural and genetic levels, have a nanotubular appearance, showing conformational similarities to amyloid fibrils. Since filamentous phages can infect only bacteria and have no tropism to mammalian cells, we utilized the f88 system to present a peptide containing a cyclic RGD (arg-gly-asp), which enabled phage internalization into the cells. Detection of intracellular AS oligomers, in differentiated SH-SY5Y cells, stably transfected with wild type AS gene, was performed using Western blot and ELISA measurements. Data presented here show reduced levels of AS soluble aggregates in phage treated cells compared to non-treated cells, suggesting new therapeutics for PD.  相似文献   

11.
The aggregation of α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Epidemiological evidence indicates that high level of homocysteine (Hcy) is associated with an increased risk of PD. However, the molecular mechanisms remain elusive. Here, we report that homocysteine thiolactone (HTL), a reactive thioester of Hcy, covalently modifies α-synuclein on the K80 residue. The levels of α-synuclein K80Hcy in the brain are increased in an age-dependent manner in the TgA53T mice, correlating with elevated levels of Hcy and HTL in the brain during aging. The N-homocysteinylation of α-synuclein stimulates its aggregation and forms fibrils with enhanced seeding activity and neurotoxicity. Intrastriatal injection of homocysteinylated α-synuclein fibrils induces more severe α-synuclein pathology and motor deficits when compared with unmodified α-synuclein fibrils. Increasing the levels of Hcy aggravates α-synuclein neuropathology in a mouse model of PD. In contrast, blocking the N-homocysteinylation of α-synuclein ameliorates α-synuclein pathology and degeneration of dopaminergic neurons. These findings suggest that the covalent modification of α-synuclein by HTL promotes its aggregation. Targeting the N-homocysteinylation of α-synuclein could be a novel therapeutic strategy against PD.  相似文献   

12.
Molecular dynamics (MD) simulations, circular dichroism (CD), and dynamic light scattering (DLS) measurements were used to investigate the aggregation propensity of the eye-lens protein γS-crystallin. The wild-type protein was investigated along with the cataract-related G18V variant and the symmetry-related G106V variant. The MD simulations suggest that local sequence differences result in dramatic differences in dynamics and hydration between these two apparently similar point mutations. This finding is supported by the experimental measurements, which show that although both variants appear to be mostly folded at room temperature, both display increased aggregation propensity. Although the disease-related G18V variant is not the most strongly destabilized, it aggregates more readily than either the wild-type or the G106V variant. These results indicate that γS-crystallin provides an excellent model system for investigating the role of dynamics and hydration in aggregation by locally unfolded proteins.  相似文献   

13.
A hallmark of Alzheimer’s disease is production of amyloid β peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid β assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid β neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect Aβ(1–40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and Aβ(1–40) that allows them to co-assemble. This effect may explain the reduction of Aβ(1–40) neurotoxicity in cells treated with tachykinins.  相似文献   

14.
The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties.  相似文献   

15.
Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid β peptide (Aβ) into extracellular fibrillar deposits known as amyloid plaque. Inhibition of Aβ aggregation is therefore viewed as a potential method to halt or slow the progression of AD. It is reported that silibinin (silybin), a flavonoid derived from the herb milk thistle (Silybum marianum), attenuates cognitive deficits induced by Aβ25-35 peptide and methamphetamine. However, it remains unclear whether silibinin interacts with Aβ peptide directly and decreases Aβ peptide-induced neurotoxicity. In the present study, we identified, through employing a ThT assay and electron microscopic imaging that silibinin also appears to act as a novel inhibitor of Aβ aggregation and this effect showed dose-dependency. We also show that silibinin prevented SH-SY5Y cells from injuries caused by Aβ(1-42)-induced oxidative stress by decreasing H(2)O(2) production in Aβ(1-42)-stressed neurons. Taken together, these results indicate that silibinin may be a novel therapeutic agent for the treatment of AD.  相似文献   

16.
Phospholipase C-γ1 (PLC-γ1) mediates cell adhesion and migration through an undefined mechanism. Here, we examine the role of PLC-γ1 in cell-matrix adhesion in a hanging drop assay of cell aggregation. Plcg1 Null (−/−) mouse embryonic fibroblasts formed aggregates that were larger and significantly more resistant to dissociation than cells in which PLC-γ1 is re-expressed (Null+ cells). Aggregate formation could be disrupted by inhibition of fibronectin interaction with integrins, indicating that fibronectin assembly may mediate aggregate formation. Fibronectin assembly was mediated by integrin α5β1 in both cell lines, while assays measuring fibronectin assembly revealed increased assembly in the Null cells. Null and Null+ cells exhibited equivalent fibronectin mRNA levels and equivalent levels of fibronectin protein in pulse-labeling experiments. However, levels of secreted fibronectin in the conditioned medium were increased in Null cells. The data implicates a negative regulatory role for PLC-γ1 in cell aggregation by controlling the secretion of fibronectin into the media and its assembly into fibrils.  相似文献   

17.
β-Amyloid peptide 1 1These authors contributed equally to this work. Communicated by Ramaswamy H. Sarma (Aβ) aggregates are toxic to neuron and the main cause of Alzheimer’s disease (AD). The role of congo red (CR) on Aβ aggregation is controversial in aqueous solution. Both prevention and promotion of Aβ aggregation have been proposed, suggesting that CR may interact with Aβ of different structural conformations resulting in different effects on Aβ aggregation behavior. CR with these characteristics can be applied to probe the molecular mechanism of Aβ aggregation. Therefore, in the present study, we used CR as a probe to study the Aβ aggregation behavior in sodium dodecyl sulfate (SDS) condition. Our results show that Aβ40 adopts two short helices at Q15-S26 and K28-L34 in the SDS environment. CR can interact with the helical form of Aβ40, and the main interaction site is located at the first helical and hydrophobic core region, residues 17–25, which is assigned as a discordant helix region. Furthermore, CR may prevent Aβ40 undergoing α-helix to β-strand conversion, and therefore aggregation through stabilizing the helical conformation of discordant helix in SDS environment, suggesting that the discordant helix plays a key role on the conformational stabilization of Aβ. Our present study implies that any factors or molecules that can stabilize the discordant helical conformation may also prevent the Aβ aggregation in membrane associated state. This leads to a new therapeutic strategy for the development of lead compounds to AD.  相似文献   

18.

The cyanobacterial non-protein amino acid α-amino-β-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms. Since its discovery, BMAA toxicity has been the subject of many in vivo and in vitro studies. A number of mechanisms of toxicity have been proposed including an agonist effect at glutamate receptors, competition with cysteine for transport system xc_ and other mechanisms capable of generating cellular oxidative stress. In addition, a wide range of studies have reported effects related to disturbances in proteostasis including endoplasmic reticulum stress and activation of the unfolded protein response. In the present studies we examine the effects of BMAA on the ubiquitin-proteasome system (UPS) and on chaperone-mediated autophagy (CMA) by measuring levels of ubiquitinated proteins and lamp2a protein levels in a differentiated neuronal cell line exposed to BMAA. The BMAA induced increases in oxidised proteins and the increase in CMA activity reported could be prevented by co-administration of L-serine but not by the two antioxidants examined. These data provide further evidence of a protective role for L-serine against the deleterious effects of BMAA.

  相似文献   

19.
Human μ-calpain is activated maximally by 100–200 μM Ca2+. Both the 80 kDa and 29 kDa subunits of μ-calpain have a EF-hand type calcium-binding domain. It is known that trivalent terbium ion (Tb3+) mimics Ca2+ in many biological systems. We found that Tb3+ alone transiently activated calpain. However, in the presence of Ca2+, Tb3+ inhibited μ-calpain with an IC50 of about 100 μM. As high as 10 mM Ca2+ did not significantly shift the IC50 of Tb3+. Preincubating μ-calpain by Ca2+ (before Tb3+ and substrate were added) did not diminish the inhibition by Tb3+. On the other hand, pretreating μ-calpain with Tb3+ produced that Tb3+ has a slow dissociation rate for the calcium-binding sites when compared to Ca2+. Electrophoretic analysis revealed that terbium ion transiently activated μ-calpain followed by the aggregation of the proteinase.  相似文献   

20.
Arginine is finding a wide range of applications in production of proteins. Arginine has been used for many years to assist protein refolding. This effect was ascribed to aggregation suppression by arginine of folding intermediates during protein refolding. Recently, we have observed that arginine facilitates elution of antibodies during Protein-A chromatography and solubilizes insoluble proteins from inclusion bodies, which both can be ascribed to weakening of protein-protein interactions. In order to gain understanding on why arginine is effective in reducing protein-protein interactions and suppressing aggregation, the effects of arginine on stability and solubility of pure proteins have been examined, which showed that arginine is not a protein-stabilizer, but is an aggregation suppressor. However, there is no explanation proposed so far on why arginine suppresses aggregation of proteins. This review addresses such question and then attempts to show differences between arginine and strong denaturants, which are also known as an aggregation suppressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号