首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The open reading frame rv1364c of Mycobacterium tuberculosis, which regulates the stress-dependent σ factor, σ(F), has been analyzed structurally and functionally. Rv1364c contains domains with sequence similarity to the RsbP/RsbW/RsbV regulatory system of the stress-response σ factor of Bacillus subtilis. Rv1364c contains, sequentially, a PAS domain (which shows sequence similarity to the PAS domain of the B. subtilis RsbP protein), an active phosphatase domain, a kinase (anti-σ(F) like) domain and?a C-terminal anti-σ(F) antagonist like domain. The crystal structures of two PAS domain constructs (at 2.3 and 1.6??) and a phosphatase/kinase dual domain construct (at 2.6??) are described. The PAS domain is shown to bind palmitic acid but to have 100 times greater affinity for palmitoleic acid. The full-length protein can exist in solution as both monomer and dimer. We speculate that a switch between monomer and dimer, possibly resulting from fatty acid binding,?affects the accessibility of the serine of the C-terminal, anti-σ(F) antagonist domain for dephosphorylation by the phosphatase domain thus indirectly altering the availability of σ(F).  相似文献   

2.
3.
Dodecins (assembly of twelve monomers) are the smallest known flavoprotein with only 65-73 amino acids and are involved in binding and storage of flavins in archaea. Here we report the crystal structure of Rv1498A, a Mycobacterium tuberculosis dodecin. This bacterial dodecin structure is similar to that of other reported dodecins. Each monomer has a 3 stranded β-sheet and an α-helix perpendicular to it. This protein has polyextreme (halophilic and thermophilic) properties. Interestingly, positively and negatively charged residues aggregate separately and do not seem to contribute to thermophilic and halophilic stability. We have examined the interactions that stabilize the Rv1498A dodecamer by preparing selected point mutants that break salt bridges and hydrophobic contacts, thereby leading to collapse of the assembly.  相似文献   

4.
Nine of ten methylated nucleotides of Escherichia coli 16 S rRNA are conserved in Mycobacterium tuberculosis. All the 10 different methyltransferases are known in E. coli, whereas only TlyA and GidB have been identified in mycobacteria. Here we have identified Rv2966c of M. tuberculosis as an ortholog of RsmD protein of E. coli. We have shown that rv2966c can complement rsmD-deleted E. coli cells. Recombinant Rv2966c can use 30 S ribosomes purified from rsmD-deleted E. coli as substrate and methylate G966 of 16 S rRNA in vitro. Structure determination of the protein shows the protein to be a two-domain structure with a short hairpin domain at the N terminus and a C-terminal domain with the S-adenosylmethionine-MT-fold. We show that the N-terminal hairpin is a minimalist functional domain that helps Rv2966c in target recognition. Deletion of the N-terminal domain prevents binding to nucleic acid substrates, and the truncated protein fails to carry out the m(2)G966 methylation on 16 S rRNA. The N-terminal domain also binds DNA efficiently, a property that may be utilized under specific conditions of cellular growth.  相似文献   

5.
Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunit-based anti-tuberculosis vaccine.  相似文献   

6.
The characterization of membrane proteins having no identified function in Mycobacterium tuberculosis is important for a better understanding of the biology of this pathogen. In this work, the biological activity of the Rv2560 protein was characterized and evaluated. Primers used in PCR and RT-PCR assays revealed that the gene encoding protein Rv2560 is present in M. tuberculosis complex strains, but transcribed in only some of them. Sera obtained from rabbits inoculated with polymer peptides from this protein recognized a 33 kDa band in the M. tuberculosis lysate and a membrane fraction corresponding to the predicted molecular mass (33.1 kDa) of this protein. Immunoelectron microscopy analysis found this protein on the mycobacterial membrane. Sixteen peptides covering its entire length were chemically synthesized and tested for their ability to bind to A549 and U937 cells. Peptide 11024 (121VVALSDRATTAYTNTSGVSS140) showed high specific binding to both cell types (dissociation constants of 380 and 800 nm, respectively, and positive receptor-ligand interaction cooperativity), whereas peptide 11033 (284LIGIPVAALIHVYTYRKLSGG304) displayed high binding activity to A549 cells only. Cross-linking assays showed the specific binding of peptide 11024 to a 54 kDa membrane protein on U937. Invasion inhibition assays, in the presence of shared high-activity binding peptide identified for U937 and A549 cells, presented maximum inhibition percentages of 50.53% and 58.27%, respectively. Our work highlights the relevance of the Rv2560 protein in the M. tuberculosis invasion process of monocytes and epithelial cells, and represents a fundamental step in the rational selection of new antigens to be included as components in a multiepitope, subunit-based, chemically synthesized, antituberculosis vaccine.  相似文献   

7.
The protein Rv0020c from Mycobacterium tuberculosis, also called FhaA, is one of the major substrates of the essential Ser/Thr protein kinase (STPK) PknB. The protein is composed of three domains and is phosphorylated on a unique site in its N terminus. We solved the solution structure of both N- and C-terminal domains and demonstrated that the approximately 300 amino acids of the intermediate domain are not folded. We present evidence that the FHA, a phosphospecific binding domain, of Rv0020c does not interact with the phosphorylated catalytic domains of PknB, but with the phosphorylated juxtamembrane domain that links the catalytic domain to the mycobacterial membrane. We also demonstrated that the degree and the pattern of phosphorylation of this juxtamembrane domain modulates the affinity of the substrate (Rv0020c) toward its kinase (PknB).  相似文献   

8.
Cyclic nucleotide monophosphate (cNMP) hydrolysis in bacteria and eukaryotes is brought about by distinct cNMP phosphodiesterases (PDEs). Since these enzymes differ in amino acid sequence and properties, they have evolved by convergent evolution. Cyclic NMP PDEs cleave cNMPs to NMPs, and the Rv0805 gene product is, to date, the only identifiable cNMP PDE in the genome of Mycobacterium tuberculosis. We have shown that Rv0805 is a cAMP/cGMP dual specificity PDE, and is unrelated in amino acid sequence to the mammalian cNMP PDEs. Rv0805 is a dimeric, Fe(3+)-Mn(2+) binuclear PDE, and mutational analysis demonstrated that the active site metals are co-ordinated by conserved aspartate, histidine and asparagine residues. We report here the structure of the catalytic core of Rv0805, which is distantly related to the calcineurin-like phosphatases. The crystal structure of the Rv0805 dimer shows that the active site metals contribute to dimerization and thus play an additional structural role apart from their involvement in catalysis. We also present the crystal structures of the Asn97Ala mutant protein that lacks one of the Mn(2+) co-ordinating residues as well as the Asp66Ala mutant that has a compromised cAMP hydrolytic activity, providing a structural basis for the catalytic properties of these mutant proteins. A molecule of phosphate is bound in a bidentate manner at the active site of the Rv0805 wild-type protein, and cacodylate occupies a similar position in the crystal structure of the Asp66Ala mutant protein. A unique substrate binding pocket in Rv0805 was identified by computational docking studies, and the role of the His140 residue in interacting with cAMP was validated through mutational analysis. This report on the first structure of a bacterial cNMP PDE thus significantly extends our molecular understanding of cAMP hydrolysis in class III PDEs.  相似文献   

9.
A large fraction of the Mycobacterium tuberculosis genome codes for proteins of unknown function. We here report the structure of one of these proteins, Rv0130, solved to a resolution of 1.8 å. The Rv0130 monomer features a single hotdog fold composed of a highly curved β-sheet on top of a long and a short α-helix. Two monomers in turn pack to form a double-hotdog-folded homodimer, similar to a large group of enzymes that use thiol esters as substrates. Rv0130 was found to contain a highly conserved R-specific hydratase motif buried deeply between the two monomers. Our biochemical studies show that the protein is able to hydrate a short trans-2-enoyl-coenzyme A moiety with a k cat of 1.1 × 102 sec−1. The importance of the side chains of D40 and H45 for hydratase activity is demonstrated by site-directed mutagenesis. In contrast to many hotdog-folded proteins, a proline residue distorts the central helix of Rv0130. This distortion allows the creation of a long, curved tunnel, similar to the substrate-binding channels of long-chain eukaryotic hydratase 2 enzymes.  相似文献   

10.
Protein phosphorylation-dephosphorylation is the principal mechanism for translation of external signals into cellular responses. Eukaryotic-like serine/threonine kinases have been reported to play important roles in bacterial development and/or virulence. The PknI protein is one of the 11 eukaryotic-like serine/threonine kinases in Mycobacterium tuberculosis H37Rv. From the bioinformatic studies, PknI protein has been shown to have an N-terminal cytoplasmic domain followed by a transmembrane region and an extracellular C-terminus suggestive of a sensor molecule. In this study, we have cloned, overexpressed, and characterized the entire coding region and the cytoplasmic domain of PknI as a fusion protein with an N-terminal histidine tag, and used immobilized metal affinity chromatography for purification of recombinant proteins. The purified recombinant proteins were found to be functionally active through in vitro phosphorylation assay and phosphoamino acid analysis. In vitro kinase assay of both proteins revealed that PknI is capable of autophosphorylation and showed manganese-dependent activity. Phosphoamino acid analysis indicated phosphorylation at serine and threonine residues. Southern blot analysis with genomic DNA highlighted the conserved nature of pknI among the various mycobacterial species. In silico analysis revealed a close homology of PknI to Stk1 from Streptococcus agalactiae, shown to have a role in virulence and cell segregation of the organism.  相似文献   

11.
Li J  Shi C  Gao Y  Wu K  Shi P  Lai C  Chen L  Wu F  Tian C 《Journal of molecular biology》2012,415(2):382-392
Rv0899 from Mycobacterium tuberculosis belongs to the OmpA (outer membrane protein A) family of outer membrane proteins. It functions as a pore-forming protein; the deletion of this gene impairs the uptake of some water-soluble substances, such as serine, glucose, and glycerol. Rv0899 has also been shown to play a part in low-pH environment adaption, which may play a part in pathogenic mycobacteria overcoming the host's defense mechanisms. Based on many bacterial physiological data and recent structural studies, it was proposed that Rv0899 forms an oligomeric channel to carry out such functions. In this work, biochemical and structural data obtained from solution NMR and EPR spectroscopy indicated that Rv0899 is a monomeric membrane-anchoring protein with two separate domains, rather than an oligomeric pore. Using NMR chemical shift perturbation and isothermal calorimetric titration assays, we show that Rv0899 was able to interact with Zn(2+) ions, which may indicate a role for Rv0899 in the process of Zn(2+) acquisition.  相似文献   

12.
The emergence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, has exacerbated the treatment and control of this disease. Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that recycles cytidine and 2′-deoxycytidine for uridine and 2′-deoxyuridine synthesis, respectively. A probable M. tuberculosis CDA-coding sequence (cdd, Rv3315c) was cloned, sequenced, expressed in Escherichia coli BL21(DE3), and purified to homogeneity. Mass spectrometry, N-terminal amino acid sequencing, gel filtration chromatography, and metal analysis of M. tuberculosis CDA (MtCDA) were carried out. These results and multiple sequence alignment demonstrate that MtCDA is a homotetrameric Zn2+-dependent metalloenzyme. Steady-state kinetic measurements yielded the following parameters: Km = 1004 μM and kcat = 4.8 s?1 for cytidine, and Km = 1059 μM and kcat = 3.5 s?1 for 2′-deoxycytidine. The pH dependence of kcat and kcat/KM for cytidine indicate that protonation of a single ionizable group with apparent pKa value of 4.3 abolishes activity, and protonation of a group with pKa value of 4.7 reduces binding. MtCDA was crystallized and crystal diffracted at 2.0 Å resolution. Analysis of the crystallographic structure indicated the presence of a Zn2+ coordinated by three conserved cysteines and the structure exhibits the canonical cytidine deaminase fold.  相似文献   

13.
14.
Rv3619c and Rv3620c are the secretory, antigenic proteins of the ESAT-6/CFP-10 family of Mycobacterium tuberculosis H37Rv. In this article, we show that Rv3619c interacts with Rv3620c to form a 1 : 1 heterodimeric complex with a dissociation constant (K(d)) of 4.8 × 10(-7) M. The thermal unfolding of the heterodimer was completely reversible, with a T(m) of 48 °C. The comparative thermodynamics and thermal unfolding analysis of the Rv3619c-Rv3620c dimer, the ESAT-6-CFP-10 dimer and another ESAT family heterodimer, Rv0287-Rv0288, revealed that the binding strength and stability of Rv3619c-Rv3620c are relatively lower than those of the other two pairs. Molecular modeling and docking studies predict the structure of Rv3619c-Rv3620c to be similar to that of ESAT-6-CFP-10. Spectroscopic studies revealed that, in an acidic environment, Rv3619c and Rv3620c lose their secondary structure and interact weakly to form a complex with a lower helical content, indicating that Rv3619c-Rv3620c is destabilized at low pH. These results, combined with those of previous studies, suggest that unfolding of the proteins is required for dissociation of the complex and membrane binding. In the presence of membrane mimetics, the α-helical contents of Rv3619c and Rv3620 increased by 42% and 35%, respectively. In mice, the immune response against Rv3619c protein is characterized by increased levels of interferon-γ, interleukin-12 and IgG(2a) , indicating a dominant Th1 response, which is mandatory for protection against mycobacterial infection. This study therefore emphasizes the potential of Rv3619c as a subunit vaccine candidate.  相似文献   

15.
The intracellular infections of Mycobacterium tuberculosis, which is the causative agent of tuberculosis, are regulated by many cyclic dinucleotide signaling. Rv2837c from M. tuberculosis is a soluble, stand-alone DHH-DHHA1 domain phosphodiesterase that down-regulates c-di-AMP through catalytic degradation and plays an important role in M. tuberculosis infections. Here, we report the crystal structure of Rv2837c (2.0 Å), and its complex with hydrolysis intermediate 5′-pApA (2.35 Å). Our structures indicate that both DHH and DHHA1 domains are essential for c-di-AMP degradation. Further structural analysis shows that Rv2837c does not distinguish adenine from guanine, which explains why Rv2837c hydrolyzes all linear dinucleotides with almost the same efficiency. We observed that Rv2837c degraded other c-di-NMPs at a lower rate than it did on c-di-AMP. Nevertheless, our data also showed that Rv2837c significantly decreases concentrations of both c-di-AMP and c-di-GMP in vivo. Our results suggest that beside its major role in c-di-AMP degradation Rv2837c could also regulate c-di-GMP signaling pathways in bacterial cell.  相似文献   

16.
【目的】应用原核表达体系对结核分枝杆菌PPE蛋白家族Rv1168c进行高效表达,进一步进行蛋白纯化和结构分析。【方法】以结核分枝杆菌H37Rv基因组为模板,扩增Rv1168c基因,构建pET32a-Rv1168c重组质粒;转化重组质粒到大肠杆菌DH5α并在BL21(DE3)诱导表达,通过十二烷基硫酸钠-聚丙烯酰胺电泳(SDS-PAGE)鉴定Rv1168c在大肠杆菌中的表达情况;Ni-NTAHis﹡Bind Resin纯化重组蛋白Rv1168c;SDS-PAGE和质谱分析测定相对分子量后,用圆二色光谱(CD)和同源模建方法分析和检测重组蛋白Rv1168c的二级和三级结构。【结果】成功克隆了971bp的目的基因Rv1168c,并获得了高纯度的重组蛋白Rv1168c。重组蛋白的分子量为51.5kDa(含载体蛋白)。25℃时重组蛋白Rv1168c的二级结构包括34.4%α螺旋,33.7%β转角,31.9%无规则卷曲,它的三维模型显示为(β/α)5结构。【结论】成功得到高纯度的重组目的Rv1168c蛋白,并初步进行了结构分析,为进一步对Rv1168c结构和功能研究奠定了基础。  相似文献   

17.
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT. A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT is stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.  相似文献   

18.
AIMS: To clone and characterize the aspartate-beta-semialdehyde dehydrogenase of Mycobacterium tuberculosis H37Rv. METHODS AND RESULTS: The asd gene of M. tuberculosis H37Rv was cloned in pGEM-T Easy vector, subcloned in expression vector pQE30 having a T5 promoter, and overexpressed in Escherichia coli. The ASD enzyme was expressed to levels of 40% but was found to be inactive. Functional ASD was obtained by altering induction and growth conditions and the enzyme was purified to near homogeneity using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The K(m) and V(max) values for the three substrates L-ASA, NADP and Pi, the turnover number and specific activity of the enzyme were determined. CONCLUSIONS: Functional ASD enzyme of M. tuberculosis was obtained by gene cloning and protein purification using affinity chromatography. The K(cat) and specific activity of the enzyme were 8.49 s(-1) and 13.4 micromol min(-1) microg(-1) respectively. Significance and Impact of the Study: The ASD enzyme is a validated drug target. We characterized this enzyme from M. tuberculosis and future work would focus on deducing the three-dimensional structure of the enzyme and design of inhibitors, which could be used as drugs against TB.  相似文献   

19.
Mycobacterium tuberculosis produces a large number of structurally diverse lipids generated from the carboxylation products of acetyl-CoA and propionyl-CoA. A biotin-dependent acyl-CoA carboxylase was purified from M. tuberculosis H37Rv by avidin affinity chromatography, and the three major protein components were determined by N-terminal sequencing to be the 63-kDa alpha3-subunit (AccA3, Rv3285), the 59-kDa beta5-subunit (AccD5, Rv3280), and the 56-kDa beta4-subunit (AccD4, Rv3799). A minor protein of about 24 kDa that co-purified with the above subunits was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to be the product of Rv3281 that is located immediately downstream of the open reading frame encoding the beta5-subunit. This protein displays identity over a short stretch of amino acids with the recently discovered epsilon-subunits of Streptomyces coelicolor, suggesting that it might be an epsilon-subunit of the mycobacterial acyl-CoA carboxylase. To test this hypothesis, the carboxylase subunits were expressed in Escherichia coli and purified. Acyl-CoA carboxylase activity was successfully reconstituted for the first time from purified subunits of the acyl-CoA carboxylase of M. tuberculosis. The reconstituted alpha3-beta5 showed higher activity with propionyl-CoA than with acetyl-CoA, and the addition of the epsilon-subunit stimulated the carboxylation by 3.2- and 6.3-fold, respectively. The alpha3-beta4 showed very low activity with the above substrates but carboxylated long chain acyl-CoA. This epsilon-subunit contains five sets of tandem repeats at the N terminus that are required for maximal enhancement of carboxylase activity. The Rv3281 open reading frame is co-transcribed with Rv3280 in the mycobacterial cell, and the level of epsilon-protein was highest during the log phase and decreased during the stationary phase.  相似文献   

20.
WhiB family of protein is emerging as one of the most fascinating group and is implicated in stress response as well as pathogenesis via their involvement in diverse cellular processes. Surprisingly, available in vivo data indicate an organism specific physiological role for each of these proteins. The WhiB proteins have four conserved cysteine residues where two of them are present in a C-X-X-C motif. In thioredoxins and similar proteins, this motif works as an active site and confers thiol-disulfide oxidoreductase activity to the protein. The recombinant WhiB1/Rv3219 was purified in a single step from Escherichia coli using Ni(2+)-NTA affinity chromatography and was found to exist as a homodimer. Mass spectrometry of WhiB1 shows that the four cysteine residues form two intramolecular disulfide bonds. Using intrinsic tryptophan fluorescence as a measure of redox state, the redox potential of WhiB1 was calculated as -236+/-2mV, which corresponds to the redox potential of many cytoplasmic thioredoxin-like proteins. WhiB1 catalyzed the reduction of insulin disulfide thus clearly demonstrating that it functions as a protein disulfide reductase. Present study for the first time suggests that WhiB1 may be a part of the redox network of Mycobacterium tuberculosis through its involvement in thiol-disulfide exchange with other cellular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号