首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
Most perennial plants combine sexual reproduction with some form of clonal propagation. These mixed strategies may produce considerable variation among populations in levels of clonal diversity in response to ecological factors limiting one or other reproductive mode. Surveys of style morph frequencies in 163 populations of the eastern North American, clonal, tristylous aquatic, Decodon verticillatus (L.) Ell. (Lythraceae) suggested a wide range of clonal diversity among populations. Populations consisting of a single style morph were most common at the northern margin of the species' range and could have arisen through severe founder events followed by exclusive clonal propagation. Here, we test this hypothesis by comparing allozyme variation in populations monomorphic and polymorphic for style length located in Ontario and Michigan. Each of the four populations monomorphic for style length were fixed for a single three-locus allozyme genotype while the seven trimorphic and five dimorphic populations contained an average of 26 multilocus genotypes each. Measures of genotypic diversity were high in polymorphic populations (average D = 0.93 ± 0.02 standard error; D = 0.00 for all populations monomorphic for style length). Three of the populations monomorphic for style length were fixed for a heterozygous genotype at one of the loci surveyed, suggesting that each consists of a single clone. In contrast, genotype frequencies in polymorphic populations conformed to Hardy-Weinberg proportions indicative of sexual reproduction. The range of clonal diversity found in D. verticillatus is the largest reported for a clonal plant species, although the literature is too limited to determine whether this is truly unusual. Clonal diversity in D. verticillatus is likely to be regulated largely by ecological factors affecting seed production and establishment. However, genetically based sexual sterility also occurs in some populations.  相似文献   

2.
Queen of the prairie, Filipendula rubra (Rosaceae), is a clonal plant species inhabiting calcareous fens and wet meadows of the northcentral United States. F. rubra reproduces asexually by underground rhizomes and sexually by seed. While many studies have explored genotype diversity in clonal species with limited sexual reproduction, fewer have been conducted on clonal species with the potential for extensive sexual reproduction. We studied the relationship between the extent of sexual reproduction and genotype diversity. Although genotype diversity in F. rubra was double that reported by others for 27 nearly obligate clonal plant species, it was still quite low. For 25 populations studied, the mean number of genotypes was 5.5 (range = 1–15; SE = 0.964) and the average proportion of distinguishable genotypes was 0.38 (range = 0.03–1.00; SE = 0.07). The production of viable seed was quite variable among populations (mean proportion of viable seeds = 0.242; range = 0.002–0.565; SE = 0.04). Considering that some inflorescences can produce over 5,000 seeds, the potential for recruitment of sexually produced individuals is very large. No correlation was found between seed production and genotype diversity as was expected in a self-incompatible species in which one-third of the populations possessed a single genotype. It was hypothesized that the low genotype diversity found in numerous populations may be due to competition limiting recruitment of new seedlings.  相似文献   

3.
Speciation via interspecific hybrids is very rare in animals, as compared to plants. Whereas most plants overcome the problem of meiosis between different chromosome sets by tetraploidization, animal hybrids often escape hybrid sterility by clonal reproduction. This comes at the expense of genetic diversity and the ability to purge deleterious mutations. However, here we show that all-hybrid populations of diploid (LR) and triploid (LLR and LRR) water frogs ( Pelophylax esculentus ) have secondarily acquired sexual reproduction. First, in a crossing experiment analyzed with microsatellite markers, triploid hybrids of both sexes and genotypes (LLR and LRR) recombined their homospecific genomes. Second, the great majority of natural populations investigated had low multilocus linkage disequilibrium, indicating a high recombination rate. As predicted from mating system models, the L genome had constant, low levels of linkage disequilibrium, whereas linkage disequilibrium in the R genome showed a significant reduction with increasing proportion of recombining triploids. This direct evidence of sexual reproduction in P. esculentus calls for a change of the conventional view of hybridogens as clonally reproducing diploids. Rather, hybridogens can be independent sexually reproducing units with an evolutionary potential.  相似文献   

4.
Clonal reproduction in Puccinia triticina, the cause of wheat leaf rust, has long been hypothesized but has never been demonstrated. Using a population genetics approach and microsatellite markers, we analysed genetic diversity of this fungus at each level of genome organisation. Sampling included isolates from two field populations growing on two cultivars carrying specific resistance genes, completed with isolates representing the main pathotypes identified from a national survey. For the two cultivars, populations differentiated according to the distribution of their genotypes and pathotypes. There was a high proportion of repeated genotypes, combined with a significant linkage disequilibrium and a strong negative value for FIS. These three factors, especially heterozygote excess, strongly support the hypothesis of a high rate of clonal reproduction. Each pathotype matched a unique multilocus genotype, except for a few isolates, which were taken to be mutants of the dominant genotype. We discussed the strong relationship between pathotypes and genotypes as the consequence of clonal reproduction combined with a strong selection exerted by host cultivars.  相似文献   

5.
In the weedy plant species Allium vineale (wild garlic), individuals may simultaneously produce sexually and asexually derived offspring, by seed and bulbils, respectively. In this study, genetic and genotypic diversity was determined in samples from 14 European A. vineale populations using nuclear (RAPD) and cytoplasmic (PCR-RFLP of cpDNA) markers to investigate the importance of the different reproductive modes. In the whole sample, 77 nuclear multilocus genotypes and four chloroplast haplotypes (chlorotypes) were found. Populations exhibited a high degree of subdivision for nuclear and cytoplasmic markers as estimated from hierarchical F-statistics; at the same time, identical chlorotypes could be found in populations separated by large distances. Genotypic diversity was significantly lower than expected under free recombination in almost all populations, indicating that recruitment into populations is mostly by asexually produced offspring. Nevertheless, within each chlorotype, the distribution of markers from pairs of nuclear loci was incompatible with a purely clonal structure, suggesting that many multilocus genotypes have originated by sexual recombination rather than by mutation within asexual lineages. It is argued that the weedy habit of A. vineale is likely to have favored bulbil reproduction, whereas sexually generated genotypes may have facilitated local adaptation during the species' expansion across Europe.  相似文献   

6.
An inhomogeneous discrete Markov model is formulated for sexual random mating with diploid male and female individuals. The generations are nonoverlapping and of given sizes. The genetic variation is in a sexually neutral allele with two varieties, giving three different genotypes. Taking sex as a marker, the Markov model works with six genotypes. The sex of each offspring is random. This implies a probability of extinction, giving the model an algorithmic nature. We compute expected genotype frequencies, their standard deviations and fixation probabilities.  相似文献   

7.
Most plants combine sexual reproduction with asexual clonal reproduction in varying degrees, yet the genetic consequences of reproductive variation remain poorly understood. The aquatic plant Butomus umbellatus exhibits striking reproductive variation related to ploidy. Diploids produce abundant viable seed whereas triploids are sexually sterile. Diploids also produce hundreds of tiny clonal bulbils, whereas triploids exhibit only limited clonal multiplication through rhizome fragmentation. We investigated whether this marked difference in reproductive strategy influences the diversity of genotypes within populations and their movement between populations by performing two large-scale population surveys (n = 58 populations) and assaying genotypic variation using random amplified polymorphic DNA (RAPDs). Contrary to expectations, sexually fertile populations did not exhibit higher genotypic diversity than sterile populations. For each cytotype, we detected one very common and widespread genotype. This would only occur with a very low probability (< 10-7) under regular sexual recombination. Compatibility analysis also indicated that the pattern of genotypic variation largely conformed to that expected with predominant clonal reproduction. The potential for recombination in diploids is not realized, possibly because seeds are outcompeted by bulbils for safe sites during establishment. We also failed to find evidence for more extensive movement of fertile than sterile genotypes. Aside from the few widespread genotypes, most were restricted to single populations. Genotypes in fertile populations were very strongly differentiated from those in sterile populations, suggesting that new triploids have not arisen during the colonization of North America. The colonization of North America involves two distinct forms of B. umbellatus that, despite striking reproductive differences, exhibit largely clonal population genetic structures.  相似文献   

8.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

9.
The genetic basis of fitness reduction associated with inbreeding is still poorly understood. Here we use associations between allozyme genotypes and fitness to investigate the genetic basis of inbreeding depression in experimental outdoor populations of the water flea, Daphnia magna. In Daphnia, a phase of clonal reproduction follows hatching from sexually produced resting eggs, and changes in genotype frequencies during the clonal phase can be used to estimate fitness. Our experiment resembles natural colonization of ponds in that single clones colonize an empty pool, expand asexually and produce sexual offspring by selfing (sisters mate with their clonal brothers). These offspring diapause and form populations consisting of selfed sibships in the following spring. In 12 of 13 experimental populations, genotypes of selfed hatchlings after diapause conformed to Mendelian expectations. During the subsequent ca. 10 asexual generations, however, genotype frequencies changed significantly at 19 of 27 single loci studied within populations, mostly in favour of heterozygotes, with heterozygosity at multiple loci affecting the change in genotype frequency multiplicatively. Because variance in heterozygosity among siblings at a given marker reflects only heterozygosity in the chromosomal region around this marker, our results suggest that selection at fitness-associated loci in the chromosomal regions near the markers were responsible for these changes. The genotype frequency changes were more consistent with selection acting on linked loci than on the allozymes themselves. Taken together, the evidence for abundant selection in the chromosomal regions of the markers and the fact that changes in genotype frequencies became apparent only after several generations of clonal selection, point to a genetic load consisting of many alleles of small or intermediate effects, which is consistent with the strong genetic differentiation and repeated genetic bottlenecks in the metapopulation from which the animals for this study were obtained.  相似文献   

10.
Cirsium rivulare is a perennial plant that forms patches consisting of ramets resulting from sexual reproduction by seeds and asexual propagation by rhizome fragmentation. We examined the relationship between the size of patches and genetic differentiation of ramets within and between patches. Ramet genotypes were identified using microsatellites. From among 216 ramets examined in the studied population, 123 had a unique genotype, while 93 were clonal, i.e., their genotype was present in at least two ramets. The frequency of ramets with clonal genotypes was 43% and the frequency of unique genotypes was 57%. Ramets with identical genotypes were dominant in small patches. Large patches consisted of ramets with both unique and clonal genotypes, usually with the predominance of the latter. A molecular variance analysis showed the highest level of variance between ramets and the lowest between patches. Additionally, 21.02% of the total variance was recorded between ramets and within patches. The size of patches was correlated with the number of clonal ramets and the number of unique ramets, but it was not correlated with the clonality index. This population of C. rivulare is currently in a phase of decline from 30 years of vegetation transformation, and there appears to have been an increase in sexual propagation based growth over clonal propagation based growth. Hence, a predominance of ramets with unique genotypes was observed. This can happen as a result of disintegration of large patches and formation of gaps between them. These gaps become convenient places for seed germination and the subsequent development of seedlings.  相似文献   

11.
Long-distance colonization and rapid range expansion associated with biological invasion may have major evolutionary consequences via both stochastic processes and selection. Using large-scale population genetic surveys, we demonstrate a major shift in the relative frequency of sexually fertile diploid versus sexually sterile triploid populations associated with the invasion of North America by a clonal aquatic plant, Butomus umbellatus. Most populations across the native European range were triploid (84% of 108), whereas most introduced populations were diploid (71% of 136). We evaluated the roles of stochastic processes versus natural selection in causing this shift by surveying predominantly neutral genetic variation at 28 RAPD loci. In Europe (EU) we detected 47 distinct genotypes among 142 plants sampled from 71 populations, whereas in North America (NA) we detected only six genotypes among 138 plants from 69 populations. Of the six NA genotypes, a set of four closely related genotypes were found only in triploid populations and a pair of closely related genotypes were found only in diploid populations, and these were genetically divergent from the triploid genotypes. This result is consistent with severe founder effect. Because sex creates genotypic variation and produces offspring with greater dispersal potential than those produced clonally, we tested the hypothesis that sexual reproduction characteristic of diploids has given them a colonization advantage that accounts for their high frequency in NA. However, we found little or no evidence of sexual recruitment in introduced diploids. One very widespread heterozygous genotype occurred in 95% of 38 introduced diploid populations (i.e., 72 of 76 plants surveyed) suggesting predominant clonal reproduction. Moreover genotypic diversity was not higher within or among diploid than triploid populations in either the native or introduced range. Low genetic diversity in diploid populations was also supported by a comparison of within-population quantitative variation for plant size under a common greenhouse environment. Thus, diploids have not been favored during colonization owing to their sexual fertility. However, concurrent studies have shown that NA diploids exhibit a much higher capacity for clonal reproduction, via small vegetative bulbils, than NA triploids, which almost never produce bulbils. The same difference in clonal capacity is not a consistent feature of the native EU populations. Taken together, these results suggest that strong founder effect has set the stage for a major increase in diploid frequency due to the particular, and possibly idiosyncratic, features of the diploid and triploid lineages introduced to North America.  相似文献   

12.
South American inselbergs constitute singular and fragmented habitats in the tropical rain forest. Pitcairnia geyskesii is restricted to these habitats and exhibits both sexual and asexual reproduction. The genetic structure of populations on three inselbergs in French Guiana is examined by analysis of ten isozyme loci. All analyzed populations show high levels of genetic variation. On average, 63.3% of loci per population were polymorphic, with a mean number of 2.21 alleles per polymorphic locus, and mean observed and expected heterozygosities of 0.185 and 0.183, respectively. The analyses of genetic variability displayed at different levels (inselbergs, subpopulations, and mats) give different but complementary information. A significant multilocus disequilibrium was detected in one subpopulation, whereas none was observed within the whole populations sampled on the three inselbergs. Tests on spatial genetic structure indicate a patchy distribution of genotypes on two inselbergs. The data give some insights on the reproductive behavior of P. geyskesii. (1) Efficient sexual reproduction leads to seed recruitment at the level of the inselberg. (2) Both clonality and seed recruitment occur within mats. (3) Vegetative spread by fragmentation is involved in the establishment of new mats. There is substantial differentiation (F(ST) = 0.322) and low gene flow among inselbergs (Nm = 0.234). High genetic diversity within inselbergs appears as a consequence of the association of genet longevity induced by clonal replication and recruitment of new genets produced by sexual reproduction.  相似文献   

13.
The vast majority of perennial plants reproduce sexually and vegetatively at the same time. This may lead to important variation among clonal plant populations in their amount of genotypic diversity. In order to verify this assumption, we compare the clonal diversity of 10 natural populations of the aquatic clonal macrophyte Sparganium erectum in France. Diversity was quantified by DNA fingerprinting and allozyme electrophoresis for a sample of 10 shoots per population. Two DNA probes (CA)8 and (TAA)6 TA, were selected among 10 synthetic oligonucleotide probes containing simple repeat motifs. Both allozymes and DNA fingerprints revealed different amounts of diversity among populations. Five populations consist of a single genotype, whereas two populations were genetically highly diverse. In four of the monomorphic populations, absence of fingerprints diversity was combined with uniformly heterozygous allozyme loci, suggesting that each population was composed of a single clone. In the highly diverse populations, the level of clonal diversity combined with the allele segregation of the two allozyme loci Lap and Est suggests frequent seedling recruitment. The origin of new genotypes remains unclear but the absence of widespread genotypes together with the discrete distribution of Sparganium erectum populations implies that new genotypes are locally produced through sexual reproduction.  相似文献   

14.
Four populations of the rare, highly clonal grass Calamagrostis porteri ssp. insperata were examined using allozymes and the two polymerase chain reaction (PCR)-based markers, random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) bands. Only one of the 15 allozyme loci was variable and two alleles were detected, both of which were found in two populations, while only one genotype was detected in the other two populations. ISSR and RAPD markers detected more genotypes within populations than did allozymes. ISSR markers detected more diversity than RAPD markers in three of the four populations examined. In one population, no RAPD diversity was found whereas eight different genotypes were found among the 10 plants with ISSR markers. This diversity is present despite rare flowering, no documented occurrence of seed set in natural populations and very low seed set with experimental pollinations, all of which suggest that sexual reproduction rarely occurs. The subspecies is self-compatible, but seed initiation is lower in selfed ovules; also, there is high embryo abortion regardless of pollen source. Variation detected by RAPD and ISSR primers may reflect higher levels of sexual reproduction in the past, very rare sexual reproduction in extant populations, somatic mutations, or a combination of the three. Although the PCR-based markers identify several multilocus genotypes within populations, it is not known whether these all represent distinct genets generated by sexual reproduction or result from somatic mutations in the old, perennial and highly clonal plants.  相似文献   

15.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

16.
The mode of reproduction (sexual and/or asexual) and the mating system determine the patterns of gene transmission and genotype formation across generations. Schistosoma mansoni is a dioecious trematode that necessarily alternates sexual and asexual reproduction during its life cycle. In a previous study of the distribution of S. mansoni genetic variability within and between definitive host individuals, we noticed that deleting multilocus genotypes from each infrapopulation so as to keep only one copy of each multilocus genotype, seemed to have a substantial effect on FIS values. More precisely, female FIS increased when repeated genotypes were removed whereas no effect was observed on male FIS. This suggested that multilocus genotypes at high frequency tended to be more heterozygous. The aim of the present study is specifically to test and analyse this phenomenon. We demonstrate that the number of repetitions per clone correlates with individual heterozygosity. This effect is however, sex-specific: only female clone size correlates with heterozygosity. We discuss this phenomenon in relation to the heterozygosity-fitness relationship and the sex-specific response to inbreeding depression.  相似文献   

17.
Population genetic structure of the fungal wheat pathogen Tapesia yallundae in Washington State was determined using genetically characterized amplified fragment length polymorphic (AFLP) markers and mating-type (MAT1-1 or MAT1-2). Segregation and linkage relationships among 164 AFLP markers and MAT were analysed using 59 progeny derived from an in vitro cross. Alleles at 158 AFLP loci and the mating-type locus segregated in a 1:1 ratio. Ten unlinked markers were chosen to determine genetic and genotypic diversity and to test the hypothesis of random mating and population differentiation among five subpopulations of T. yallundae representative of the geographical distribution of wheat production in eastern Washington. Among 228 isolates collected, overall gene diversity was high (h = 0.425) and a total of 91 unique multilocus genotypes (MLG) were identified, with 32 MLG occurring at least twice. The overall population genetic structure was consistent with random mating based on the segregation of mating-type, index of association (IA), parsimony tree length permutation test (PTLPT) and genotypic diversity analyses. However, clonal genotypes were found within each subpopulation and were also distributed among the five subpopulations. No significant differences in allele frequencies were found among the five subpopulations for all 10 loci based on contingency table analysis (G2) and Wier & Cockerham's population differentiation statistic theta (theta = -0.008, P = 0.722). T. yallundae appears to consist of a large homogeneous population throughout eastern Washington with both sexual and asexual reproduction contributing to the observed population genetic structure despite no report of sexual fruiting bodies of T. yallundae occurring under natural field conditions.  相似文献   

18.
The spatial distribution of clonal versus sexual reproduction in plant populations should generally have differing effects on the levels of biparental inbreeding and the apparent selfing rate, produced via mating by proximity through limited pollen dispersal. We used allozyme loci, join-count statistics, and Moran's spatial autocorrelation statistics to separate the spatial genetic structure caused by clonal reproduction from that maintained in sexually reproduced individuals in two populations of Adenophora grandiflora, a perennial herb. Join-count statistics showed that there were statistically significant clustering of clonal genotypes within distances less than 4 m. Both the entire populations and the sets of sexually reproduced individuals exhibited significant spatial autocorrelation at less than about 12 m, and the sexually reproduced individuals are substantially structured in an isolation-by-distance manner, consistent with a neighborhood size of about 50.  相似文献   

19.
Summary. In a few, scattered species of social Hymenoptera, unmated workers are capable of producing female offspring from unfertilized eggs through thelytokous parthenogenesis. Regular thelytoky has previously been demonstrated in a number of populations of the neotropical ant Platythyrea punctata. Nevertheless, the finding of males and inseminated queens and workers suggested the sporadic occurrence of sex. In this study we investigated the genetic structure of colonies from Puerto Rico and Costa Rica in order to detect traces of occasional sexual reproduction. Most Puerto Rican colonies had a clonal structure with all nestmates sharing the same multilocus genotype, indicating that thelytoky is the predominant mode of reproduction. Genetic variability was detected in six of 18 colonies and might have arisen from adoption of alien workers in one colony and from the adoption of alien workers, recombination during parthenogenesis, or sexual reproduction in the other colonies. The reproductive of one of these latter colonies was found to be an inseminated worker (gamergate), and the genotypes of its nestmates definitively suggested recombination and sexual reproduction. Three gamergates were found in a single colony collected in Costa Rica, and all produced offspring from fertilized eggs, while uninseminated workers were apparently incapable of reproducing by thelytoky.Received 10 August 2004; revised 20 October 2004; accepted 3 November 2004.  相似文献   

20.
Vegetative propagation (clonal growth) conveys several evolutionary advantages that positively affect life history fitness and is a widespread phenomenon among angiosperms that also reproduce sexually. However, a bias towards clonality can interfere with sexual reproduction and lead to sexual extinction, although a dearth of effective genetic tools and mathematical models for clonal plants has hampered assessment of these impacts. Using the endangered tropical epiphytic or lithophytic orchid Bulbophyllum bicolor as a model, we integrated an examination of breeding system with 12 microsatellite loci and models valid for clonal species to test for the “loss of sex” and infer likely consequences for long‐term reproductive dynamics. Bagging experiments and field observations revealed B. bicolor to be self‐incompatible and pollinator‐dependent, with an absence of fruit‐set over 4 years. Challenging the assumptions that clonal populations can be as genotypically diverse as sexually reproducing ones and that clonality does not greatly influence genetic structure, just 22 multilocus genotypes were confirmed among all 15 extant natural populations, 12 of the populations were found to be monoclonal, and all three multiclonal ones exhibited a distinct phalanx clonal architecture. Our results suggest that all B. bicolor populations depend overwhelmingly on clonal growth for persistence, with a concomitant loss of sex due to an absence of pollinators and a lack of mating opportunities at virtually all sites, both of which are further entrenched by habitat fragmentation. Such cryptic life history impacts, potentially contributing to extinction debt, could be widespread among similarly fragmented, outcrossing tropical epiphytes, demanding urgent conservation attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号